×

Core-periphery structure in directed networks. (English) Zbl 1473.90024

Summary: Empirical networks often exhibit different meso-scale structures, such as community and core-periphery structures. Core-periphery structure typically consists of a well-connected core and a periphery that is well connected to the core but sparsely connected internally. Most core-periphery studies focus on undirected networks. We propose a generalization of core-periphery structure to directed networks. Our approach yields a family of core-periphery block model formulations in which, contrary to many existing approaches, core and periphery sets are edge-direction dependent. We focus on a particular structure consisting of two core sets and two periphery sets, which we motivate empirically. We propose two measures to assess the statistical significance and quality of our novel structure in empirical data, where one often has no ground truth. To detect core-periphery structure in directed networks, we propose three methods adapted from two approaches in the literature, each with a different trade-off between computational complexity and accuracy. We assess the methods on benchmark networks where our methods match or outperform standard methods from the literature, with a likelihood approach achieving the highest accuracy. Applying our methods to three empirical networks – faculty hiring, a world trade dataset and political blogs – illustrates that our proposed structure provides novel insights in empirical networks.

MSC:

90B10 Deterministic network models in operations research

References:

[1] Newman M. 2018 Networks, 2nd edn. Oxford, UK: Oxford University Press. · Zbl 1391.94006
[2] Peixoto TP. 2014 Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047.
[3] Beguerisse-Díaz M, Garduno-Hernández G, Vangelov B, Yaliraki SN, Barahona M. 2014 Interest communities and flow roles in directed networks: the Twitter network of the UK riots. J. R. Soc. Interface 11, 20140940. (doi:10.1098/rsif.2014.0940) · doi:10.1098/rsif.2014.0940
[4] Kojaku S, Masuda N. 2017 Finding multiple core-periphery pairs in networks. Phys. Rev. E 96, 052313. (doi:10.1103/PhysRevE.96.052313) · doi:10.1103/PhysRevE.96.052313
[5] Borgatti SP, Everett MG. 1999 Models of core/periphery structures. Soc. Netw. 21, 375-395. (doi:10.1016/S0378-8733(99)00019-2) · doi:10.1016/S0378-8733(99)00019-2
[6] Everett MG, Borgatti SP. 2000 Peripheries of cohesive subsets. Soc. Netw. 21, 397-407. (doi:10.1016/S0378-8733(99)00020-9) · doi:10.1016/S0378-8733(99)00020-9
[7] Holme P. 2005 Core-periphery organization of complex networks. Phys. Rev. E 72, 046111. (doi:10.1103/PhysRevE.72.046111) · doi:10.1103/PhysRevE.72.046111
[8] Yang J, Leskovec J. 2012 Structure and overlaps of communities in networks. (http://arxiv.org/abs/1205.6228)
[9] Zhang X, Martin T, Newman ME. 2015 Identification of core-periphery structure in networks. Phys. Rev. E 91, 032803. (doi:10.1103/PhysRevE.91.032803) · doi:10.1103/PhysRevE.91.032803
[10] Tudisco F, Higham DJ. 2019 A nonlinear spectral method for core-periphery detection in networks. SIMODS 1, 269-292. · Zbl 1499.05402
[11] Mondragón RJ. 2016 Network partition via a bound of the spectral radius. J. Complex Netw. 5, 513-526. (doi:10.1093/comnet/cnw029) · Zbl 1462.05332 · doi:10.1093/comnet/cnw029
[12] Cucuringu M, Rombach P, Lee SH, Porter MA. 2016 Detection of core-periphery structure in networks using spectral methods and geodesic paths. Eur. J. Appl. Math. 27, 846-887. (doi:10.1017/S095679251600022X) · Zbl 1380.68311 · doi:10.1017/S095679251600022X
[13] Lee SH, Cucuringu M, Porter MA. 2014 Density-based and transport-based core-periphery structures in networks. Phys. Rev. E 89.
[14] Tang W, Zhao L, Liu W, Liu Y, Yan B. 2019 Recent advance on detecting core-periphery structure: a survey. CCF Trans. Pervasive Comput. Interact. 1-15.
[15] Azimi-Tafreshi N, Dorogovtsev SN, Mendes JFF. 2013 Core organization of directed complex networks. Phys. Rev. E 87, 032815. (doi:10.1103/PhysRevE.87.032815) · doi:10.1103/PhysRevE.87.032815
[16] van Lidth de Jeude J, Caldarelli G, Squartini T. 2019 Detecting core-periphery structures by surprise. Europhys. Lett. 125, 68001. (doi:10.1209/0295-5075/125/68001) · doi:10.1209/0295-5075/125/68001
[17] Boyd JP, Fitzgerald WJ, Mahutga MC, Smith DA. 2010 Computing continuous core/periphery structures for social relations data with MINRES/SVD. Soc. Netw. 32, 125-137. (doi:10.1016/j.socnet.2009.09.003) · doi:10.1016/j.socnet.2009.09.003
[18] Kostoska O, Mitikj S, Jovanovski P, Kocarev L. 2020 Core-periphery structure in sectoral international trade networks: a new approach to an old theory. PLoS ONE 15, 1-24. (doi:10.1371/journal.pone.0229547) · doi:10.1371/journal.pone.0229547
[19] Csermely P, London A, Wu LY, Uzzi B. 2013 Structure and dynamics of core/periphery networks. J. Complex Netw. 1, 93-123. (doi:10.1093/comnet/cnt016) · doi:10.1093/comnet/cnt016
[20] Broder A, Kumar R, Maghoul F, Raghavan P, Rajagopalan S, Stata R, Tomkins A, Wiener J. 2000 Graph structure in the Web. Comput. Netw. 33, 309-320. (doi:10.1016/S1389-1286(00)00083-9) · doi:10.1016/S1389-1286(00)00083-9
[21] Lu NP. 2016 Using eigenvectors of perturbed and collapsed adjacency matrices to explore bowtie structures in directed networks. J. Chin. Inst. Eng. 39, 936-945. (doi:10.1080/02533839.2016.1225517) · doi:10.1080/02533839.2016.1225517
[22] Yang R, Zhuhadar L, Nasraoui O. 2011 Bow-tie decomposition in directed graphs. In 14th Int. Conf. on Information Fusion, pp. 1-5.
[23] Elliott A, Chiu A, Bazzi M, Reinert G, Cucuringu M. 2019 Core-periphery structure in directed networks. (http://arxiv.org/abs/1912.00984) · Zbl 1473.90024
[24] Cattani G, Ferriani S. 2008 A core/periphery perspective on individual creative performance: social networks and cinematic achievements in the Hollywood film industry. Organ. Sci. 19, 824-844. (doi:10.1287/orsc.1070.0350) · doi:10.1287/orsc.1070.0350
[25] Kleinberg JM. 1999 Authoritative sources in a hyperlinked environment. J. ACM 46, 604-632. (doi:10.1145/324133.324140) · Zbl 1065.68660 · doi:10.1145/324133.324140
[26] Lacasa L, van Lidth de Jeude J, Di Clemente R, Caldarelli G, Saracco F, Squartini T. 2019 Reconstructing mesoscale network structures. Complexity 2019, 5120581. (doi:10.1145/324133.324140) · Zbl 1065.68660 · doi:10.1145/324133.324140
[27] Ma HW, Zeng AP. 2003 The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423-1430. (doi:10.1093/bioinformatics/btg177) · doi:10.1093/bioinformatics/btg177
[28] Barucca P, Lillo F. 2016 Disentangling bipartite and core-periphery structure in financial networks. Chaos Soliton Fract. 88, 244-253. (doi:10.1016/j.chaos.2016.02.004) · Zbl 1415.91330 · doi:10.1016/j.chaos.2016.02.004
[29] Kojaku S, Masuda N. 2018 Core-periphery structure requires something else in the network. New J. Phys. 20, 043012. (doi:10.1088/1367-2630/aab547) · doi:10.1088/1367-2630/aab547
[30] Hubert L, Arabie P. 1985 Comparing partitions. J. Classif. 2, 193-218. (doi:10.1007/BF01908075) · Zbl 0587.62128 · doi:10.1007/BF01908075
[31] Pedregosa F et al. 2011 Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830. · Zbl 1280.68189
[32] Meilǎ M, Shi J. 2001 A random walks view of spectral segmentation. In Int. Workshop on Artificial Intelligence and Statistics (AISTATS).
[33] Kvalseth TO. 1987 Entropy and correlation: some comments. IEEE Trans. Syst. Man Cybern. 17, 517-519. (doi:10.1109/TSMC.1987.4309069) · doi:10.1109/TSMC.1987.4309069
[34] Satuluri V, Parthasarathy S. 2011 Symmetrizations for clustering directed graphs. In Proc. of the 14th Int. Conf. on Extending Database Technology, pp. 343-354. ACM.
[35] Borodin A, Robert GO, Rosenthal JS, Tsaparas P. 2005 Link analysis ranking: algorithms, theory, and experiments. ACM Trans. Internet Technol.
[36] Hagberg AA, Schult DA, Swart PJ. 2008 Exploring network structure, dynamics, and function using NetworkX. In Proc. of the 7th Python in Science Conference (SciPy2008), CA, USA, pp. 11-15.
[37] Kleinberg JM. 1999 Authoritative sources in a hyperlinked environment. J. ACM 46, 604-632. (doi:10.1145/324133.324140) · Zbl 1065.68660 · doi:10.1145/324133.324140
[38] Cucuringu M, Koutis I, Chawla S, Miller GL, Peng R. 2016 Simple and scalable constrained clustering: a generalized spectral method. Proc. Mach. Learn. Res. 51, 445-454.
[39] Lee JR, Gharan SO, Trevisan L. 2014 Multiway spectral partitioning and higher-order Cheeger inequalities. J. ACM 61, 37. · Zbl 1321.05151
[40] Arthur D, Vassilvitskii S. 2007 k-means++: the advantages of careful seeding. In SODA ’07: Proc. of the eighteenth annual ACM-SIAM Symp. on Discrete algorithms, pp. 1027-1035. Society for Industrial and Applied Mathematics. · Zbl 1302.68273
[41] MacQueen JB. 1967 Some methods for classification and analysis of multivariate observations. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and Probability (eds LML Cam, J Neyman), vol. 1, pp. 281-297. Berkeley, CA: University of California Press. · Zbl 0214.46201
[42] Karrer B, Newman ME. 2011 Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107. (doi:10.1103/PhysRevE.83.016107) · doi:10.1103/PhysRevE.83.016107
[43] Rohe K, Qin T, Yu B. 2016 Co-clustering directed graphs to discover asymmetries and directional communities. Proc. Natl Acad. Sci. USA 113, 12 679-12 684. (doi:10.1073/pnas.1525793113) · Zbl 1406.91306 · doi:10.1073/pnas.1525793113
[44] Peixoto TP. 2014 The graph-tool python library. Figshare.
[45] Peixoto TP. 2014 Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804. (doi:10.1103/PhysRevE.89.012804) · doi:10.1103/PhysRevE.89.012804
[46] Clauset A, Arbesman S, Larremore DB. 2015 Systematic inequality and hierarchy in faculty hiring networks. Sci. Adv. 1, e1400005. (doi:10.1126/sciadv.1400005) · doi:10.1126/sciadv.1400005
[47] Feenstra RC, Lipsey RE, Deng H, Ma AC, Mo H. 2005 World Trade Flows: 1962-2000. Working Paper 11040, National Bureau of Economic Research, Cambridge, MA, USA.
[48] Adamic LA, Glance N. 2005 The political blogosphere and the 2004 US election: divided they blog. In Proc. of the 3rd Int. workshop on Link discovery, pp. 36-43. ACM.
[49] Jaschik S. 2012 Faculty pay, around the world. Inside Higher Ed. See https://www.insidehighered.com/news/2012/03/22/new-study-analyzes-how-faculty-pay-compares-worldwide.
[50] Sherouse O. 2014 Wbdata—python package. See https://github.com/skojaku/core-periphery-detection.
[51] World Bank, OECD. 2020 GDP per capita (current US\() data. See https://data.worldbank.org/indicator/NY.GDP.PCAP.CD\)
[52] Stockholm International Peace Research Institute. 2020 Military expenditure (
[53] UNESCO Institute for Statistics. 2020 Research and development expenditure (
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.