×

High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour. (English) Zbl 1472.92192

Summary: Typhoid fever has long established itself endemically in rural Ghana despite the availability of cheap and effective vaccines. We used a game-theoretic model to investigate whether the low vaccination coverage in Ghana could be attributed to rational human behaviour. We adopted a version of an epidemiological model of typhoid fever dynamics, which accounted not only for chronic life-long carriers but also for a short-cycle transmission in the immediate environment and a long-cycle transmission via contamination of the water supply. We calibrated the model parameters based on the known incidence data. We found that unless the (perceived) cost of vaccination is negligible, the individually optimal population vaccination rate falls significantly short of the societally optimal population vaccination rate needed to reach herd immunity. We expressed both the herd immunity and the optimal equilibrium vaccination rates in terms of only a few observable parameters such as the incidence rate, demographics, vaccine waning rate and the perceived cost of vaccination relative to the cost of infection. This allowed us not to rely on other uncertain epidemiological model parameters and, in particular, to bypass uncertainties about the role of the carriers in the transmission.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
Full Text: DOI

References:

[1] Bhan M, Bahl R, Bhatnagar S. 2005 Typhoid and paratyphoid fever. Lancet 366, 749-762. (doi:10.1016/S0140-6736(05)67181-4) · doi:10.1016/S0140-6736(05)67181-4
[2] WHO. 2018 Weekly Epidemiological Record, 30 March 2018, vol. 93, 13 (pp. 153-172). https://apps.who.int/iris/bitstream/handle/10665/272272/WER9313.pdf?ua=1.
[3] Khan MI, Franco-Paredes C, Sahastrabuddhe S, Ochiai RL, Mogasale V, Gessner BD. 2017 Barriers to typhoid fever vaccine access in endemic countries. Res. Rep. Trop. Med. 8, 37-44. (doi:10.2147/RRTM.S97309) · doi:10.2147/RRTM.S97309
[4] Klugman KP, Koornhof HJ, Robbins JB, Le Cam NN. 1996 Immunogenicity, efficacy and serological correlate of protection of Salmonella typhi Vi capsular polysaccharide vaccine three years after immunization. Vaccine 14, 435-438. (doi:10.1016/0264-410X(95)00186-5) · doi:10.1016/0264-410X(95)00186-5
[5] Cvjetanović B, Grab B, Uemura K. 1971 Epidemiological model of typhoid fever and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. Bull. World Health Organ. 45, 53. · Zbl 0602.92016
[6] Lange H-J, Ulm K, Raettig H, Huber HC. 1983 The effect of various interventions during a typhoid epidemic. Results of a simulation study. Infection 11, 97-103. (doi:10.1007/BF01641074) · doi:10.1007/BF01641074
[7] Cvjetanovic B, Grab B, Dixon H. 1986 Computerized epidemiological model of typhoid fever with age structure and its use in the planning and evaluation of antityphoid immunization and sanitation programmes. Math. Model. 7, 719-744. (doi:10.1016/0270-0255(86)90129-6) · Zbl 0602.92016 · doi:10.1016/0270-0255(86)90129-6
[8] González-Guzmán J. 1989 An epidemiological model for direct and indirect transmission of typhoid fever. Math. Biosci. 96, 33-46. (doi:10.1016/0025-5564(89)90081-3) · Zbl 0675.92012 · doi:10.1016/0025-5564(89)90081-3
[9] Watson CH, Edmunds WJ. 2015 A review of typhoid fever transmission dynamic models and economic evaluations of vaccination. Vaccine 33, C42-C54. (doi:10.1016/j.vaccine.2015.04.013) · doi:10.1016/j.vaccine.2015.04.013
[10] Bakach I, Just MR, Gambhir M, Fung IC-H. 2015 Typhoid transmission: a historical perspective on mathematical model development. Trans. R. Soc. Trop. Med. Hyg. 109, 679-689. (doi:10.1093/trstmh/trv075) · doi:10.1093/trstmh/trv075
[11] Bailey NT. 1982 The structural simplification of an epidemiological compartment model. J. Math. Biol. 14, 101-116. (doi:10.1007/BF02154756) · Zbl 0484.92020 · doi:10.1007/BF02154756
[12] Mushayabasa S, Bhunu CP, Mhlanga NA. 2014 Modeling the transmission dynamics of typhoid in malaria endemic settings. Appl. Appl. Math. 9, 121-140. · Zbl 1333.92062
[13] Mutua JM, Wang F-B, Vaidya NK. 2015 Modeling malaria and typhoid fever co-infection dynamics. Math. Biosci. 264, 128-144. (doi:10.1016/j.mbs.2015.03.014) · Zbl 1371.92124 · doi:10.1016/j.mbs.2015.03.014
[14] Tilahun GT, Makinde OD, Malonza D. 2018 Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis. Appl. Math. Comput. 316, 438-459. · Zbl 1426.92086
[15] Pitzer VE, Bowles CC, Baker S, Kang G, Balaji V, Farrar JJ, Grenfell BT. 2014 Predicting the impact of vaccination on the transmission dynamics of typhoid in South Asia: a mathematical modeling study. PLoS Negl. Trop. Dis. 8, e2642. (doi:10.1371/journal.pntd.0002642) · doi:10.1371/journal.pntd.0002642
[16] Pitzer VE, Feasey NA, Msefula C, Mallewa J, Kennedy N, Dube Q, Denis B, Gordon MA, Heyderman RS. 2015 Mathematical modeling to assess the drivers of the recent emergence of typhoid fever in Blantyre, Malawi. Clin. Infect. Dis. 61(suppl. 4), S251-S258. (doi:10.1093/cid/civ710) · doi:10.1093/cid/civ710
[17] Mushayabasa S. 2016 Modeling the impact of optimal screening on typhoid dynamics. Int. J. Dyn. Control 4, 330-338. (doi:10.1007/s40435-014-0123-4) · doi:10.1007/s40435-014-0123-4
[18] Bauch CT, Earn DJ. 2004 Vaccination and the theory of games. Proc. Natl Acad. Sci. USA 101, 13 391-13 394. (doi:10.1073/pnas.0403823101) · Zbl 1064.91029 · doi:10.1073/pnas.0403823101
[19] Crawford K, Lancaster A, Oh H, Rychtář J. 2015 A voluntary use of insecticide-treated cattle can eliminate African sleeping sickness. Lett. Biomath. 2, 91-101. (doi:10.30707/LiB2.1Crawford) · doi:10.30707/LiB2.1Crawford
[20] Klein SRM, Foster AO, Feagins DA, Rowell JT, Erovenko IV. 2019 Optimal voluntary and mandatory insect repellent usage and emigration strategies to control the chikungunya outbreak on Reunion Island. Preprint.
[21] Kobe J, Pritchard N, Short Z, Erovenko IV, Rychtář J, Rowell JT. 2018 A game-theoretic model of cholera with optimal personal protection strategies. Bull. Math. Biol. 80, 2580-2599. (doi:10.1007/s11538-018-0476-5) · Zbl 1400.92506 · doi:10.1007/s11538-018-0476-5
[22] Dorsett C, Oh H, Paulemond ML, Rychtář J. 2016 Optimal repellent usage to combat dengue fever. Bull. Math. Biol. 78, 916-922. (doi:10.1007/s11538-016-0167-z) · Zbl 1348.92150 · doi:10.1007/s11538-016-0167-z
[23] Brettin A, Rossi-Goldthorpe R, Weishaar K, Erovenko IV. 2018 Ebola could be eradicated through voluntary vaccination. R. Soc. Open Sci. 5, 171591. (doi:10.1098/rsos.171591) · doi:10.1098/rsos.171591
[24] Chouhan A, Maiwand S, Ngo M, Putalapattu V, Rychtář J, Taylor D. 2020 Game-theoretical model of retroactive hepatitis B vaccination in China. Bull. Math. Biol. 82, 80. (doi:10.1007/s11538-020-00748-5) · Zbl 1453.92186 · doi:10.1007/s11538-020-00748-5
[25] Scheckelhoff K, Ejaz A, Erovenko IV. 2019 A game-theoretic model of optimal clean equipment usage to prevent hepatitis C among injecting drug users. Preprint.
[26] Broom M, Rychtář J, Spears-Gill T. 2016 The game-theoretical model of using insecticide-treated bed-nets to fight malaria. Appl. Math. 7, 852-860. (doi:10.4236/am.2016.79076) · doi:10.4236/am.2016.79076
[27] Martinez A, Machado J, Sanchez E, Erovenko I. 2019 Optimal vaccination strategies to reduce endemic levels of meningitis in Africa. Preprint.
[28] Bankuru SV, Kossol S, Hou W, Mahmoudi P, Rychtář J, Taylor D. 2020 A game-theoretic model of Monkeypox to assess vaccination strategies. PeerJ 8, e9272. (doi:10.7717/peerj.9272) · doi:10.7717/peerj.9272
[29] Cheng E, Gambhirrao N, Patel R, Zhowandai A, Rychtář J, Taylor D. 2020 A game-theoretical analysis of poliomyelitis vaccination. J. Theor. Biol. 499, 110298. (doi:10.1016/j.jtbi.2020.110298) · Zbl 1455.92083 · doi:10.1016/j.jtbi.2020.110298
[30] Sykes D, Rychtář J. 2015 A game-theoretic approach to valuating toxoplasmosis vaccination strategies. Theor. Popul. Biol. 105, 33-38. (doi:10.1016/j.tpb.2015.08.003) · Zbl 1342.92284 · doi:10.1016/j.tpb.2015.08.003
[31] Chang SL, Piraveenan M, Pattison P, Prokopenko M. 2020 Game theoretic modelling of infectious disease dynamics and intervention methods: a review. J. Biol. Dyn. 14, 57-89. (doi:10.1080/17513758.2020.1720322) · Zbl 1447.92405 · doi:10.1080/17513758.2020.1720322
[32] Dalaba MA, Welaga P, Matsubara C. 2017 Cost of delivering health care services at primary health facilities in Ghana. BMC Health Serv. Res. 17, 742. (doi:10.1186/s12913-017-2676-3) · doi:10.1186/s12913-017-2676-3
[33] Gavi. 2015 Program bulletin October 2015. https://www.gavi.org/library/publications/gavi-bulletin/programme-bulletin-october-2015 (accessed 16 April 2020).
[34] water.org. 2020 Ghana’s water and sanitation crisis. https://water.org/our-impact/ghana/ (accessed 19 April 2020).
[35] Jeon HJ, Im J, Haselbeck A, Holm M, Rakotozandrindrainy R, Bassiahi AS, Panzner U, Mogeni OD, Seo HJ, Lunguya O. 2019 How can the Typhoid fever surveillance in Africa and the severe Typhoid fever in Africa programs contribute to the introduction of Typhoid conjugate vaccines? Clin. Infect. Dis. 69(suppl. 6), S417-S421. (doi:10.1093/cid/ciz629) · doi:10.1093/cid/ciz629
[36] Krumkamp R, Sarpong N, Kreuels B, Ehlkes L, Loag W, Schwarz NG, Zeeb H, Adu-Sarkodie Y, May J. 2013 Health care utilization and symptom severity in Ghanaian children—a cross-sectional study. PLoS ONE 8, e80598. (doi:10.1371/journal.pone.0080598) · doi:10.1371/journal.pone.0080598
[37] von Kalckreuth V, Konings F, Aaby P, Adu-Sarkodie Y, Ali M, Aseffa A, Baker S, Breiman RF, Bjerregaard-Andersen M, Clemens JD. 2016 The typhoid fever surveillance in Africa program (TSAP): clinical, diagnostic, and epidemiological methodologies. Clin. Infect. Dis. 62(suppl. 1), S9-S16. (doi:10.1093/cid/civ693) · doi:10.1093/cid/civ693
[38] Marks F et al. 2010 Typhoid fever among children, Ghana. Emerg. Infect. Dis. 16, 1796. (doi:10.3201/eid1611.100388) · doi:10.3201/eid1611.100388
[39] Marks F et al. 2017 Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob. Health 5, e310-e323. (doi:10.1016/S2214-109X(17)30022-0) · doi:10.1016/S2214-109X(17)30022-0
[40] Adetunde I. 2008 Mathematical models for the dynamics of typhoid fever in Kassena-Nankana district of upper east region of Ghana. Modern Math. Stat. 2, 45-49.
[41] Mushayabasa S. 2011 Impact of vaccines on controlling typhoid fever in Kassena-Nankana district of upper east region of Ghana: insights from a mathematical model. J. Mod. Math. Stat. 5, 54-59. (doi:10.3923/jmmstat.2011.54.59) · doi:10.3923/jmmstat.2011.54.59
[42] World Bank. 2020 Life expectancy at birth. https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=CN (accessed 16 April 2020).
[43] Parry CM, Hien TT, Dougan G, White NJ, Farrar JJ. 2002 Typhoid fever. N. Engl. J. Med. 347, 1770-1782. (doi:10.1056/NEJMra020201) · doi:10.1056/NEJMra020201
[44] Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. 2014 Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol. 22, 648-655. (doi:10.1016/j.tim.2014.06.007) · doi:10.1016/j.tim.2014.06.007
[45] Levine MM, Black RE, Lanata C. 1982 Precise estimation of the numbers of chronic carriers of Salmonella typhi in Santiago, Chile, an endemic area. J. Infect. Dis. 146, 724-726. (doi:10.1093/infdis/146.6.724) · doi:10.1093/infdis/146.6.724
[46] Hornick R, Greisman S, Woodward T, DuPont H, Hawkins A, Snyder M. 1970 Typhoid fever: pathogenesis and immunologic control. N. Engl. J. Med. 283, 739-746. (doi:10.1056/NEJM197010012831406) · doi:10.1056/NEJM197010012831406
[47] Brauer F, van der Driessche P, Wu J. 2008 Lecture notes in mathematical epidemiology. Berlin, Germany: Springer. · Zbl 1159.92034
[48] Castillo-Chavez C, Thieme H. 1993 Asymptotically autonomous epidemic models. In Mathematical population dynamics: analysis of heterogeneity, vol. 1. Theory of epidemics (eds O Arino, D Axelrod, M Kimmel, M Langlais), pp. 33-50. Winnipeg, Canada: Wuerz.
[49] van den Driessche P, Watmough J. 2002 Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29-48. (doi:10.1016/S0025-5564(02)00108-6) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[50] Martcheva M. 2015 An introduction to mathematical epidemiology, vol. 61. New York, NY: Springer. · Zbl 1333.92006
[51] Date KA, Bentsi-Enchill A, Marks F, Fox K. 2015 Typhoid fever vaccination strategies. Vaccine 33, C55-C61. (doi:10.1016/j.vaccine.2015.04.028) · doi:10.1016/j.vaccine.2015.04.028
[52] Slayton R, Date K, Mintz E. 2013 Vaccination for typhoid fever in sub-Saharan Africa. Hum. Vaccines Immunotherapeutics 9, 903-906. (doi:10.4161/hv.23007) · doi:10.4161/hv.23007
[53] Antillón M, Bilcke J, Paltiel AD, Pitzer VE. 2017 Cost-effectiveness analysis of typhoid conjugate vaccines in five endemic low- and middle-income settings. Vaccine 35, 3506-3514. (doi:10.1016/j.vaccine.2017.05.001) · doi:10.1016/j.vaccine.2017.05.001
[54] Cho J-C, Kim S-J. 1999 Viable, but non-culturable, state of a green fluorescence protein-tagged environmental isolate of Salmonella typhi in groundwater and pond water. FEMS Microbiol. Lett. 170, 257-264. (doi:10.1111/j.1574-6968.1999.tb13382.x) · doi:10.1111/j.1574-6968.1999.tb13382.x
[55] Maskin E. 1999 Nash equilibrium and welfare optimality. Rev. Econ. Stud. 66, 23-38. (doi:10.1111/1467-937X.00076) · Zbl 0956.91034 · doi:10.1111/1467-937X.00076
[56] Serpell L, Green J. 2006 Parental decision-making in childhood vaccination. Vaccine 24, 4041-4046. (doi:10.1016/j.vaccine.2006.02.037) · doi:10.1016/j.vaccine.2006.02.037
[57] Greenaway C, Schofield S, Henteleff A, Plourde P, Geduld J, Abdel-Motagally M, Bryson M. 2014 Typhoid: summary of the statement on international travellers and typhoid by the committee to advise on tropical medicine and travel (CATMAT). Can. Commun. Dis. Rep. 40, 60. (doi:10.14745/ccdr.v40i04a01) · doi:10.14745/ccdr.v40i04a01
[58] Roumagnac P et al. 2006 Evolutionary history of Salmonella typhi. Science 314, 1301-1304. (doi:10.1126/science.1134933) · doi:10.1126/science.1134933
[59] Fu F, Rosenbloom DI, Wang L, Nowak MA. 2011 Imitation dynamics of vaccination behaviour on social networks. Proc. R. Soc. B 278, 42-49. (doi:10.1098/rspb.2010.1107) · doi:10.1098/rspb.2010.1107
[60] Arefin MR, Masaki T, Kabir KA, Tanimoto J. 2019 Interplay between cost and effectiveness in influenza vaccine uptake: a vaccination game approach. Proc. R. Soc. A 475, 20190608. (doi:10.1098/rspa.2019.0608) · Zbl 1472.92196 · doi:10.1098/rspa.2019.0608
[61] Arefin MR, Kabir KA, Tanimoto J. 2020 A mean-field vaccination game scheme to analyze the effect of a single vaccination strategy on a two-strain epidemic spreading. J. Stat. Mech: Theory Exp. 2020, 033501. (doi:10.1088/1742-5468/ab74c6) · Zbl 1456.92131 · doi:10.1088/1742-5468/ab74c6
[62] Huang J, Wang J, Xia C. 2020 Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks. Chaos Solitons Fractals 130, 109425. (doi:10.1016/j.chaos.2019.109425) · doi:10.1016/j.chaos.2019.109425
[63] Iwamura Y, Tanimoto J. 2018 Realistic decision-making processes in a vaccination game. Physica A 494, 236-241. (doi:10.1016/j.physa.2017.11.148) · Zbl 1514.91040 · doi:10.1016/j.physa.2017.11.148
[64] Kabir KA, Tanimoto J. 2019 Modelling and analysing the coexistence of dual dilemmas in the proactive vaccination game and retroactive treatment game in epidemic viral dynamics. Proc. R. Soc. A 475, 20190484. (doi:10.1098/rspa.2019.0484) · Zbl 1472.92222 · doi:10.1098/rspa.2019.0484
[65] Kabir KA, Jusup M, Tanimoto J. 2019 Behavioral incentives in a vaccination-dilemma setting with optional treatment. Phys. Rev. E 100, 062402. (doi:10.1103/PhysRevE.100.062402) · doi:10.1103/PhysRevE.100.062402
[66] Kuga K, Tanimoto J, Jusup M. 2019 To vaccinate or not to vaccinate: a comprehensive study of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling. J. Theor. Biol. 469, 107-126. (doi:10.1016/j.jtbi.2019.02.013) · Zbl 1411.92174 · doi:10.1016/j.jtbi.2019.02.013
[67] Zhou T, Fu Z, Wang B. 2006 Epidemic dynamics on complex networks. Prog. Nat. Sci. 16, 452-457. (doi:10.1080/10020070612330137) · Zbl 1121.92063 · doi:10.1080/10020070612330137
[68] Zhang H, Zhang J, Zhou C, Small M, Wang B. 2010 Hub nodes inhibit the outbreak of epidemic under voluntary vaccination. New J. Phys. 12, 023015. (doi:10.1088/1367-2630/12/2/023015) · doi:10.1088/1367-2630/12/2/023015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.