×

Berry phase quantum thermometer. (English) Zbl 1451.81251

Summary: We show how the Berry phase can be used to construct a high-precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.

MSC:

81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
81P15 Quantum measurement theory, state operations, state preparations

References:

[1] Berry M V 1984 Quantal phase factors accompanying adiabatic changes Proc. R. Soc. Lond. A 392 45 · Zbl 1113.81306 · doi:10.1098/rspa.1984.0023
[2] Fuentes-Guridi I et al 2002 Vacuum induced spin-1/2 Berry’s phase Phys. Rev. Lett.89 220404 · Zbl 1267.81181 · doi:10.1103/PhysRevLett.89.220404
[3] Fuentes-Guridi I, Bose S and Vedral V 2000 Proposal for measurement of harmonic oscillator Berry phase in ion traps Phys. Rev. Lett.85 5018 · doi:10.1103/PhysRevLett.85.5018
[4] Martín-Martínez E, Fuentes I and Mann R B 2011 Using Berry’s phase to detect the Unruh effect at lower accelerations Phys. Rev. Lett.107 131301 · doi:10.1103/PhysRevLett.107.131301
[5] Stace T M 2010 Quantum limits of thermometry Phys. Rev. A 82 011611 · doi:10.1103/PhysRevA.82.011611
[6] Crispino L C B, Higuchi A and Matsas G E A 2008 The Unruh effect and its applications Rev. Mod. Phys.80 787 · Zbl 1205.83030 · doi:10.1103/RevModPhys.80.787
[7] DeWitt B S 1980 General Relativity an Einstein Centenary Survey (Cambridge: Cambridge University Press) · Zbl 0445.53040
[8] Louko J and Satz A 2006 How often does the Unruh-DeWitt detector click? Regularization by a spatial profile Class. Quantum Grav.23 6321 · Zbl 1117.83030 · doi:10.1088/0264-9381/23/22/015
[9] Louko J and Satz A 2008 Transition rate of the Unruh-DeWitt detector in curved spacetime Class. Quantum Grav.25 055012 · Zbl 1136.83019
[10] Louko J and Schleich K 1999 The exponential law: monopole detectors, Bogoliubov transformations and the thermal nature of the Euclidean vacuum in BbbP 3 de Sitter spacetime Class. Quantum Grav.16 2005 · Zbl 0962.81039 · doi:10.1088/0264-9381/16/6/328
[11] Massar S and Spindel P 2006 Einstein-Podolsky-Rosen correlations between two uniformly accelerated oscillators Phys. Rev. D 74 085031 · doi:10.1103/PhysRevD.74.085031
[12] Lin S-Y and Hu B L 2007 Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors Phys. Rev. D 76 064008 · doi:10.1103/PhysRevD.76.064008
[13] Brown E G et al 2013 Detectors for probing relativistic quantum physics beyond perturbation theory Phys. Rev. D 87 084062 · doi:10.1103/PhysRevD.87.084062
[14] Bruschi D E, Lee A R and Fuentes I 2013 Time evolution techniques for detectors in relativistic quantum information J. Phys. A: Math. Theor.46 165303 · Zbl 1267.81026 · doi:10.1088/1751-8113/46/16/165303
[15] Lee A R and Fuentes I 2012 Spatially extended Unruh-DeWitt detectors for relativistic quantum information arXiv:1211.5261
[16] Holstein T and Primakoff H 1940 Field dependence of the intrinsic domain magnetization of a ferromagnet Phys. Rev.58 1098 · Zbl 0027.18604 · doi:10.1103/PhysRev.58.1098
[17] Klein A and Marshalek E R 1991 Boson realizations of Lie algebras with applications to nuclear physics Rev. Mod. Phys.63 375 · doi:10.1103/RevModPhys.63.375
[18] Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic)
[19] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511813993
[20] Chen G et al 2007 Quantum Computing Devices: Prinicples Designs and Analysis (Boca Raton, FL: Chapmann and Hall/CRC) · Zbl 1119.81004
[21] Aharonov Y and Anandan J 1987 Phase change during a cyclic quantum evolution Phys. Rev. Lett.58 1593 · doi:10.1103/PhysRevLett.58.1593
[22] Holstein B R 1989 The adiabatic theorem and Berry’s phase Am. J. Phys.57 1079 · doi:10.1119/1.15793
[23] Sjöqvist E et al 2000 Geometric phases for mixed states in interferometry Phys. Rev. Lett.85 2845 · doi:10.1103/PhysRevLett.85.2845
[24] Dimopoulos S et al 2007 Testing general relativity with atom interferometry Phys. Rev. Lett.98 111102 · doi:10.1103/PhysRevLett.98.111102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.