×

On Leibniz cohomology. (English) Zbl 1465.17006

The main results of the paper involve vanishing theorems for the Leibniz cohomology of semi-simple left Leibniz algebras over a field of characteristic zero. Recall that a left Leibniz algebra \(\mathfrak{L}\) (over a field \(k\)) is a \(k\)-vector space equipped with a bilinear map \(\circ :\mathfrak{L}\times\mathfrak{L}\to\mathfrak{L}\) that is a derivation from the left, namely \[x\circ(y\circ z)=(x\circ y)\circ z+y\circ (x\circ z), \] which is the mirror image of a right derivation for right Leibniz algebras introduced and studied in [J.-L. Loday and T. Pirashvili, Math. Ann. 296, No. 1, 139–158 (1993; Zbl 0821.17022)]. Let Leib\((\mathfrak{L})\) denote the vector subspace of \(\mathfrak{L}\) consisting of all linear combinations of squares \(x^2 :=x\circ x\), \(x\in\mathfrak{L}\). Then Leib\((\mathfrak{L})\) is an ideal of \(\mathfrak{L}\) and \(\mathfrak{L}/\mathrm{Leib}(\mathfrak{L}):=\mathfrak{L}_{\mathrm{Lie}}\) is a Lie algebra with bracket induced by the derivation operation \(\circ\). The Leibniz algebra \(\mathfrak{L}\) is said to be semi-simple if the corresponding Lie algebra \(\mathfrak{L}_{\mathrm{Lie}}\) is semi-simple. The authors define the Leibniz cohomology, \(HL^*(\mathfrak{L};\,M)\), of the left Leibniz algebra \(\mathfrak{L}\) with coefficients in an \(\mathfrak{L}\)-bimodule \(M\) by using the mirror image of the coboundary map in [loc. cit.] for the Leibniz cohomology of a right Leibniz algebra \(\mathfrak{L}_R\) with coefficients in a representation of \(\mathfrak{L}_R\). The two theories are isomorphic. For reference, a bimodule \(M\) over a left Leibniz algebra \(\mathfrak{L}\) is a \(k\)-vector space supporting a left and right action \[\mathfrak{L} \times M \to M, \ \ \ M \times \mathfrak{L} \to M \] that satisfy: \begin{align*} & (x \circ y ) \circ m = x \circ ( y \circ m ) - y \circ ( x \circ m) \\ & (x \circ m ) \circ y = x \circ ( m \circ y) - m \circ ( x \circ y) \\ & (m \circ x ) \circ y = m \circ ( x \circ y) - x \circ ( m \circ y ), \ \ \ m \in M, \ \ x, \ y \in \mathfrak{L}. \end{align*} For an \(\mathfrak{L}\)-bimodule \(M\), let \[ M^{\mathfrak{L}} := \{m \in M \mid m \circ x = 0, \ \forall x \in \mathfrak{L} \, \} \] be the subspace of right \(\mathfrak{L}\)-invariants. Proven in the paper is that for a finite-dimensional semi-simple left Leibniz algebra \(\mathfrak{L}\) over a characteristic zero field, and \(M\) an \(\mathfrak{L}\)-bimodule with \(M^{\mathfrak{L}} = 0\), then \(HL^n (\mathfrak{L} ; \, M) = 0\) for \(n \geq 0\). The proof is via a version of the Pirashvili (or Hochschild-Serre) spectral sequence [T. Pirashvili, Ann. Inst. Fourier 44, No. 2, 401–411 (1994; Zbl 0821.17023)] applied to the short exact sequence \[ 0 \longrightarrow\mathrm{Leib}(\mathfrak{L})\longrightarrow\mathfrak{L} \longrightarrow\mathfrak{L}_{\mathrm{Lie}}\longrightarrow 0. \] Also used in the proof is the vanishing theorem [P. Ntolo, C. R. Acad. Sci., Paris, Sér. I 318, No. 8, 707–710 (1994; Zbl 0797.17012)] for the Leibniz cohomology of a semi-simple Lie algebra in characteristic zero. Furthermore, if the hypothesis on \(M^{\mathfrak{L}}\) is dropped and \(M\) is a finite-dimensional \(\mathfrak{L}\)-bimodule, then \(HL^n (\mathfrak{L};\, M) = 0\) for \(n \geq 2\). In general the result does not hold over a field of prime characteristic with a counter-example given in the paper. For \(\mathbf{F}\) a field of characteristic zero, and \(\mathfrak{L}\) a finite-dimensional semi-simple left Leibniz algebra, \(HL^n (\mathfrak{L};\,\mathbf{F}) = 0\) for \(n \geq 1\). If \(\mathfrak{L}_{ad}\) denotes the adjoint representation of \(\mathfrak{L}\), then \(HL^n (\mathfrak{L}; \,\mathfrak{L}_{ad}) = 0\), \(n \geq 2\), confirming a conjecture of Adashev, Ladra and Omirov. The paper also contains calculations for the Leibniz cohomology of the two-dimensional non-abelian Lie algebra \(\mathfrak{A}\) on two symbols \(h\), \(e\) with \([h, \, e] = e = -[e, \, h]\). Coefficients are in a one-dimensional left \(\mathfrak{A}\)-module \(\mathbf{F}_{\lambda}= \langle 1 \rangle\) with \(h(1) = \lambda\) and \(e(1) = 0\).

MSC:

17A32 Leibniz algebras
17B56 Cohomology of Lie (super)algebras
17B30 Solvable, nilpotent (super)algebras

References:

[1] Adashev, J. Q.; Ladra, M.; Omirov, B. A., The second cohomology group of simple Leibniz algebras, J. Algebra Appl., 17, 12, Article 1850222 pp. (2018) · Zbl 1462.17004
[2] Balavoine, D., Déformations et rigidité géométrique des algèbres de Leibniz, Commun. Algebra, 24, 3, 1017-1034 (1996) · Zbl 0855.17021
[3] Barnes, D. W., On the cohomology of soluble Lie algebras, Math. Z., 101, 343-349 (1967) · Zbl 0166.04102
[4] Barnes, D. W., On Levi’s theorem for Leibniz algebras, Bull. Aust. Math. Soc., 86, 2, 184-185 (2012) · Zbl 1280.17002
[5] Benkart, G. M.; Osborn, J. M., Representations of rank one Lie algebras of characteristic p, (Lie Algebras and Related Topics. Lie Algebras and Related Topics, New Brunswick, NJ, 1981. Lie Algebras and Related Topics. Lie Algebras and Related Topics, New Brunswick, NJ, 1981, Lecture Notes in Mathematics, vol. 933 (1982), Springer: Springer Berlin/Heidelberg/New York), 1-37 · Zbl 0491.17003
[6] Boyle, K.; Misra, K. C.; Stitzinger, E., Complete Leibniz algebras (2020), Preprint (6 pages) · Zbl 1466.17001
[7] Camacho, L. M.; Omirov, B. A.; Kurbanbaev, T. K., Leibniz algebras constructed by Witt algebras, Linear Multilinear Algebra, 67, 10, 2048-2064 (2019) · Zbl 1452.17004
[8] Carles, R., Sur la structure des algèbres de Lie rigides, Ann. Inst. Fourier (Grenoble), 34, 3, 65-82 (1984) · Zbl 0519.17004
[9] Chevalley, C.; Eilenberg, S., Cohomology theory of Lie groups and Lie algebras, Trans. Am. Math. Soc., 63, 1, 85-124 (1948) · Zbl 0031.24803
[10] Covez, S., The local integration of Leibniz algebras (2010), Université de Nantes, Thèse de Doctorat
[11] Dzhumadildaev, A. S., On the cohomology of modular Lie algebras, Math. USSR Sb., 47, 1, 127-143 (1984) · Zbl 0523.17004
[12] Ecker, J.; Schlichenmaier, M., The vanishing of the low-dimensional cohomology of the Witt and the Virasoro algebra (2018), Preprint (26 pages)
[13] Farnsteiner, R., Central extensions and invariant forms of graded Lie algebras, Algebras Groups Geom., 3, 4, 431-455 (1986) · Zbl 0621.17012
[14] Feldvoss, J., Leibniz algebras as non-associative algebras, (Vojtěchovský, P.; Bremner, M. R.; Carter, J. S.; Evans, A. B.; Huerta, J.; Kinyon, M. K.; Moorhouse, G. E.; Smith, J. D.H., Nonassociative Mathematics and Its Applications. Nonassociative Mathematics and Its Applications, Denver, CO, 2017. Nonassociative Mathematics and Its Applications. Nonassociative Mathematics and Its Applications, Denver, CO, 2017, Contemp. Math., vol. 721 (2019), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 115-149, This paper can also be obtained from the arXiv via · Zbl 1436.17004
[15] Fialowski, A.; Mihálka, É. Zs., Representations of Leibniz algebras, Algebr. Represent. Theory, 18, 2, 477-490 (2015) · Zbl 1394.17003
[16] Fialowski, A.; Magnin, L.; Mandal, A., About Leibniz cohomology and deformations of Lie algebras, J. Algebra, 383, 63-77 (2013) · Zbl 1362.17034
[17] Fischer, G., Darstellungstheorie des ersten Frobeniuskerns der \(\operatorname{SL}_2 (1982)\), Universität Bielefeld, Dissertation · Zbl 0599.20053
[18] Hochschild, G., Cohomology of restricted Lie algebras, Am. J. Math., 76, 3, 555-580 (1954) · Zbl 0055.26505
[19] Hochschild, G.; Serre, J-P., Cohomology of Lie algebras, Ann. Math. (2), 57, 3, 591-603 (1953) · Zbl 0053.01402
[20] Hu, N.; Pei, Y.; Liu, D., A cohomological characterization of Leibniz central extensions of Lie algebras, Proc. Am. Math. Soc., 136, 2, 437-447 (2008) · Zbl 1140.17003
[21] Huebschmann, J., Automorphisms of group extensions and differentials in the Lyndon-Hochschild-Serre spectral sequence, J. Algebra, 72, 2, 296-334 (1981) · Zbl 0443.18018
[22] Humphreys, J. E., Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9 (1980), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0447.17002
[23] Leger, G.; Luks, E., Cohomology and weight systems for nilpotent Lie algebras, Bull. Am. Math. Soc., 80, 1, 77-80 (1974) · Zbl 0354.18020
[24] Loday, J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2), 39, 3-4, 269-293 (1993) · Zbl 0806.55009
[25] Loday, J.-L., Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301 (1998), Springer: Springer Berlin/Heidelberg/New York · Zbl 0885.18007
[26] Loday, J.-L.; Pirashvili, T., Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296, 1, 139-158 (1993) · Zbl 0821.17022
[27] Loday, J.-L.; Pirashvili, T., Leibniz representations of Lie algebras, J. Algebra, 181, 2, 414-425 (1996) · Zbl 0855.17018
[28] Lodder, J. M., Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier (Grenoble), 48, 1, 73-95 (1998) · Zbl 0912.17001
[29] Magnin, L., Cohomologie adjointe des algèbres de Lie de Heisenberg, Commun. Algebra, 21, 6, 2101-2129 (1993) · Zbl 0778.17017
[30] Ntolo, P., Homologie de Leibniz d’algèbres de Lie semi-simples, C. R. Acad. Sci. Paris, Ser. I, 318, 8, 707-710 (1994) · Zbl 0797.17012
[31] Pirashvili, T., On Leibniz homology, Ann. Inst. Fourier (Grenoble), 44, 2, 401-411 (1994) · Zbl 0821.17023
[32] Pirashvili, T., A counterexample to a proposition of Feldvoss-Wagemann and Burde-Wagemann (2019), Preprint (3 pages)
[33] Schlichenmaier, M., An elementary proof of the vanishing of the second cohomology of the Witt and Virasoro algebra with values in the adjoint module, Forum Math., 26, 3, 913-929 (2014) · Zbl 1367.17016
[34] Tolpygo, A. K., Cohomologies of parabolic Lie algebras, Mat. Zametki. Mat. Zametki, Math. Notes, 12, 585-587 (1972), (in Russian); English transl. · Zbl 0256.18012
[35] Weibel, C. A., An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, vol. 38 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0797.18001
[36] Williams, F. L., The cohomology of semisimple Lie algebras with coefficients in a Verma module, Trans. Am. Math. Soc., 240, 115-127 (1978) · Zbl 0389.17003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.