×

Two-point connectivity of two-dimensional critical \(Q\)-Potts random clusters on the torus. (English) Zbl 1459.82047

Summary: We consider the two dimensional \(Q\)-random-cluster Potts model on the torus and at the critical point. We study the probability for two points to be connected by a cluster for general values of \(Q\in [1, 4]\). Using a conformal field theory (CFT) approach, we provide the leading topological corrections to the plane limit of this probability. These corrections have universal nature and include, as a special case, the universality class of two-dimensional critical percolation. We compare our predictions to Monte Carlo measurements. Finally, we take Monte Carlo measurements of the torus energy one-point function that we compare to CFT computations.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Duplantier B 2006 Conformal random geometry (arXiv:math-ph/0608053) · Zbl 1370.60013
[2] Bauer M and Bernard D 2006 2D growth processes: SLE and Loewner chains Phys. Rep.432 115-221 · doi:10.1016/j.physrep.2006.06.002
[3] Cardy J L 1992 Critical percolation in finite geometries J. Phys. A: Math. Gen.25 L201 · Zbl 0965.82501 · doi:10.1088/0305-4470/25/4/009
[4] Cardy J 2005 SLE for theoretical physicists Ann. Phys.318 81-118 · Zbl 1073.81068 · doi:10.1016/j.aop.2005.04.001
[5] Gaberdiel M R and Kausch H G 1999 A local logarithmic conformal field theory Nuclear Phys. B 538 631-58 · Zbl 0948.81632 · doi:10.1016/S0550-3213(98)00701-9
[6] Kausch H G 2000 Symplectic fermions Nuclear Phys. B 583 513-41 · Zbl 0984.81141 · doi:10.1016/S0550-3213(00)00295-9
[7] Wu F Y 1982 The Potts model Rev. Mod. Phys.54 235 · doi:10.1103/RevModPhys.54.235
[8] Caracciolo S, Jacobsen J L, Saleur H, Sokal A D and Sportiello A 2004 Fermionic field theory for trees and forests Phys. Rev. Lett.93 080601 · doi:10.1103/PhysRevLett.93.080601
[9] Delfino G and Viti J 2011 Potts q-color field theory and scaling random cluster model Nuclear Phys. B 852 149-73 · Zbl 1229.82032 · doi:10.1016/j.nuclphysb.2011.06.012
[10] Gori G and Viti J 2017 Exact logarithmic four-point functions in the critical two-dimensional Ising model Phys. Rev. Lett.119 191601 · doi:10.1103/PhysRevLett.119.191601
[11] Gori G and Viti J 2018 Four-point boundary connectivities in critical two-dimensional percolation from conformal invariance J. High Energy Phys.2018 131 · Zbl 1405.81130 · doi:10.1007/JHEP12(2018)131
[12] Delfino G and Viti J 2011 On three-point connectivity in two-dimensional percolation J. Phys. A: Math. Theor.44 032001 · Zbl 1208.82023 · doi:10.1088/1751-8113/44/3/032001
[13] Picco M, Santachiara R, Viti J and Delfino G 2013 Connectivities of Potts Fortuin-Kasteleyn clusters and time-like Liouville correlator Nuclear Phys. B 875 719-37 · Zbl 1331.82017 · doi:10.1016/j.nuclphysb.2013.07.014
[14] Delfino G, Picco M, Santachiara R and Viti J 2013 Spin clusters and conformal field theory J. Stat. Mech. P11011 · Zbl 1331.82017 · doi:10.1088/1742-5468/2013/11/P11011
[15] Estienne B and Ikhlef Y 2015 Correlation functions in loop models (arXiv:1505.00585)
[16] Ikhlef Y, Lykke Jacobsen J and Saleur H 2015 Three-point functions in c⩽=1 Liouville theory and conformal loop ensembles Phys. Rev. Lett.116 130601 · doi:10.1103/PhysRevLett.116.130601
[17] LeClair A and Squires J 2018 Conformal bootstrap for percolation and polymers J. Stat. Mech. 123105 · Zbl 1457.82462 · doi:10.1088/1742-5468/aaf10a
[18] Jacobsen J L and Saleur H 2018 Bootstrap approach to geometrical four-point functions in the two-dimensional critical Q-state Potts model: a study of the s-channel spectra (arXiv:1809.02191)
[19] Picco M, Ribault S and Santachiara R 2016 A conformal bootstrap approach to critical percolation in two dimensions SciPost Phys.1 009 · doi:10.21468/SciPostPhys.1.1.009
[20] Picco M, Ribault S and Santachiara R 2019 On four-point connectivities in the critical 2d Potts model SciPost Phys.7 044 · doi:10.21468/SciPostPhys.7.4.044
[21] Ribault S 2014 Conformal field theory on the plane (arXiv:1406.4290)
[22] Ribault S and Santachiara R 2015 Liouville theory with a central charge less than one J. High Energy Phys. 109 · Zbl 1388.81694 · doi:10.1007/JHEP08(2015)109
[23] Kanno S, Matsuo Y and Shiba S 2010 Analysis of correlation functions in Toda theory and AGT-W relation for SU(3) quiver Phys. Rev. D 82 066009 · doi:10.1103/PhysRevD.82.066009
[24] Eguchi T and Ooguri H 1987 Conformal and current algebras on a general Riemann surface Nuclear Phys. B 282 308-28 · doi:10.1016/0550-3213(87)90686-9
[25] Javerzat N, Santachiara R and Foda O 2018 Notes on the solutions of Zamolodchikov-type recursion relations in Virasoro minimal models J. High Energy Phys. 109 · Zbl 1396.81177 · doi:10.1007/JHEP08(2018)183
[26] Fortuin C and Kasteleyn P 1972 On the random-cluster model: I. Introduction and relation to other models 57 536-64 · doi:10.1016/0031-8914(72)90045-6
[27] Di Francesco P, Saleur H and Zuber J-B 1987 Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models J. Stat. Phys.49 57-79 · Zbl 0960.82507 · doi:10.1007/BF01009954
[28] Dotsenko V and Fateev V 1985 Operator algebra of two-dimensional conformal theories with central charge C⩽1 Phys. Lett. B 154 291-5 · doi:10.1016/0370-2693(85)90366-1
[29] Jacobsen J 2012 Loop models and boundary CFT Conformal Invariance: an Introduction to Loops, Interfaces and Stochastic Loewner Evolution ed M Henkel and D Karevski (Berlin: Springer) · Zbl 1251.82019 · doi:10.1007/978-3-642-27934-8_4
[30] Saleur H 1987 Conformal invariance for polymers and percolation J. Phys. A: Math. Gen.20 455 · doi:10.1088/0305-4470/20/2/031
[31] Beffara V and Duminil-Copin H 2010 The self-dual point of the two-dimensional random-cluster model is critical for q⩾1 (arXiv:1006.5073)
[32] Jayaraman T and Narain K 1990 Correlation functions for minimal models on the torus Nuclear Phys. B 331 629-58 · doi:10.1016/0550-3213(90)90087-T
[33] Dotsenko V and Fateev V 1985 Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge C⩽1 Nuclear Phys. B 251 691-734 · doi:10.1016/S0550-3213(85)80004-3
[34] Migliaccio S and Ribault S 2017 The analytic bootstrap equations of non-diagonal two-dimensional CFT J. High Energy Phys. 169 · Zbl 1391.81171 · doi:10.1007/JHEP05(2018)169
[35] Santachiara R and Viti J 2014 Local logarithmic correlators as limits of Coulomb gas integrals Nuclear Phys. B 882 229-62 · Zbl 1285.81062 · doi:10.1016/j.nuclphysb.2014.02.022
[36] Chayes L and Machta J 1998 Graphical representations and cluster algorithms II Physica A 254 477-516 · doi:10.1016/S0378-4371(97)00637-7
[37] Deng Y, Garoni T M, Machta J, Ossola G, Polin M and Sokal A D 2007 Dynamic critical behavior of the Chayes-Machta algorithm for the random-cluster model, I. two dimensions J. Stat. Phys.144 459 · Zbl 1227.82026 · doi:10.1007/s10955-011-0267-y
[38] Wu T T, McCoy B M, Tracy C A and Barouch E 1976 Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region Phys. Rev. B 13 316 · doi:10.1103/PhysRevB.13.316
[39] Cao X, Rosso A and Santachiara R 2015 Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics EPL111 16001 · doi:10.1209/0295-5075/111/16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.