×

Impact of temporal scales and recurrent mobility patterns on the unfolding of epidemics. (English) Zbl 1456.92143

Summary: Human mobility plays a key role on the transformation of local disease outbreaks into global pandemics. Indeed, the inclusion of population movement into epidemic models has become mandatory for understanding current epidemic episodes as well as designing efficient prevention policies. Following this challenge, here we develop a Markovian framework that enables us to address the impact of recurrent mobility patterns on epidemic onset at different temporal scales. The formalism is validated by comparing its predictions with results from mechanistic simulations. The fair agreement between theory and numerical simulations, enables us to derive an analytical expression for the epidemic threshold, capturing the critical conditions triggering epidemic outbreaks. Finally, by performing an exhaustive analysis of this epidemic threshold, we reveal that the impact of tuning human mobility on the emergence of diseases is strongly affected by the temporal scales associated to both epidemiological and mobility processes.

MSC:

92D30 Epidemiology
37N25 Dynamical systems in biology

References:

[1] Lindahl J F and Grace D 2015 The consequences of human actions on risks for infectious diseases: a review Infect. Ecol. Epidemiol.5 30048 · doi:10.3402/iee.v5.30048
[2] Brownstein J, Wolfe C J and Mandl K D 2006 Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United State PLoS Med.3 e40 · doi:10.1371/journal.pmed.0030401
[3] Findlater A and Bogoch I I 2018 Human mobility and the global spread of infectious diseases: a focus on air travel Trends Parasitol.34 772 · doi:10.1016/j.pt.2018.07.004
[4] Ferguson N M et al 2006 Strategies for mitigating an influenza pandemic Nature442 448 · doi:10.1038/nature04795
[5] Guimerá R, Mossa S, Turtschi A and Amaral L A N 2005 The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles Proc. Natl Acad. Sci. USA102 7794-9 · Zbl 1135.90309 · doi:10.1073/pnas.0407994102
[6] Hoberg E P and Brooks D R 2015 Evolution in action: climate change, biodiversity dynmaics and emerging infectious disease Phil. Trans. R. Soc. B 370 20130553 · doi:10.1098/rstb.2013.0553
[7] Lafferty K D 2009 The ecology of climate change and infectious diseases Ecology90 888 · doi:10.1890/08-0079.1
[8] Wu X et al 2016 Impact of climate change on human infectious diseases: empirical evidence and human adaptation Environ. Int. A 86 14 · doi:10.1016/j.envint.2015.09.007
[9] 2013 Dengue outbreak in Madeira, Portugal European Centre for Disease Prevention and Control (https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/dengue-madeira-ECDC-mission-2013.pdf)
[10] Local transmission of dengue fever in France and Spain 2018 European Centre for Disease Prevention and Control (https://www.ecdc.europa.eu/sites/portal/files/documents/08-10-2018-RRA-Dengue-France.pdf)
[11] Zeller H, Van Bortel W and Sundre B 2016 Chikungunya: its history in Africa and Asia and its spread to new regions in 2013-2014 J. Infect. Dis.214 436 · doi:10.1093/infdis/jiw391
[12] Balcan D, Goncalves B, Hu H, Ramasco J J, Colizza V and Vespignani A 2010 Modeling the spatial spread of infectious diseases: the global epidemic and mobility computational model J. Comput. Sci.1 132-45 · doi:10.1016/j.jocs.2010.07.002
[13] Tizzoni M et al 2012 Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm BMC Med.10 165 · doi:10.1186/1741-7015-10-165
[14] Zhang Q et al 2018 Spread of Zika virus in the Americas Proc. Natl Acad. Sci. USA114 E4334 · doi:10.1073/pnas.1620161114
[15] Gomes M F C, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran M E and Vespignani A 2014 Assessing the international spreading risk associated with the 2014 West African Ebola outbreak PLoS Curr. Outbreaks2014 1-24 · doi:10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
[16] Nicolaides C, Cueto-Felgueroso L and Juanes R 2013 The price of anarchy in mobility-driven contagion dynamics J. R. Soc. Interface10 20130495 · doi:10.1098/rsif.2013.0495
[17] Pastor-Satorras R, Castellano C, Van Mieghem P and Vespignani A 2015 Epidemic processes in complex networks Rev. Mod. Phys.87 925-79 · doi:10.1103/RevModPhys.87.925
[18] Wang W, Tang M, Stanley H E and Braunstein L A 2017 Unification of theoretical approaches for epidemic spreading on complex networks Rep. Prog. Phys.80 036603 · doi:10.1088/1361-6633/aa5398
[19] Hanski I and Gilpin M E 1997 Metapopulation Biology: Ecology, Genetics, and Evolution (New York: Academic) · Zbl 0913.92025
[20] Hanski I and Gaggiotti O E 2004 Ecology, Genetics, and Evolution of Metapopulations (New York: Academic)
[21] Keeling M J and Rohani P 2008 Modeling Infectious Diseases in Humans and Animals (Princeton, NJ: Princeton University Press) · Zbl 1279.92038 · doi:10.1515/9781400841035
[22] Ball H et al 2015 Seven challenges for metapopulation models of epidemics, including households models Epidemics10 63 · doi:10.1016/j.epidem.2014.08.001
[23] Colizza V, Pastor-Satorras R and Vespignani A 2007 Reaction-diffusion processes and metapopulation models in heterogeneous networks Nat. Phys.3 276-82 · doi:10.1038/nphys560
[24] Colizza V and Vespignani A 2007 Invasion threshold in heterogeneous metapopulation networks Phys. Rev. Lett.99 148701 · doi:10.1103/PhysRevLett.99.148701
[25] Colizza V and Vespignani A 2008 Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations J. Theor. Biol.251 450-67 · Zbl 1398.92233 · doi:10.1016/j.jtbi.2007.11.028
[26] Balcan D, Colizza V, Gonçalves B, Hao H, Ramasco J J and Vespignani A 2009 Multiscale mobility networks and the spatial spreading of infectious diseases Proc. Natl Acad. Sci. USA106 21484-9 · doi:10.1073/pnas.0906910106
[27] Balcan D and Vespignani A 2011 Phase transitions in contagion processes mediated by recurrent mobility patterns Nat. Phys.7 581-6 · doi:10.1038/nphys1944
[28] Belik V, Geisel T and Brockmann D 2011 Natural human mobility patterns and spatial spread of infectious diseases Phys. Rev. X 1 011001 · doi:10.1103/PhysRevX.1.011001
[29] Balcan D and Vespignani A 2011 Invasion threshold in structured populations with recurrent mobility patterns J. Theor. Biol.293 87-100 · Zbl 1307.92335 · doi:10.1016/j.jtbi.2011.10.010
[30] Belik V, Geisel T and Brockmann D 2011 Recurrent host mobility in spatial epidemics: beyond reaction-diffusion Eur. Phys. J. B 84 579-87 · doi:10.1140/epjb/e2011-20485-2
[31] Poletto C, Tizzoni M and Colizza V 2013 Human mobility and time spent at destination: impact on spatial epidemic spreading J. Theor. Bio.338 41 · Zbl 1411.92287 · doi:10.1016/j.jtbi.2013.08.032
[32] Granell C and Mucha P 2018 Epidemic spreading in localized environments with recurrent mobility patterns Phys. Rev. E 97 052302 · doi:10.1103/PhysRevE.97.052302
[33] Soriano-Paños D, Lotero L, Arenas A and Gómez-Gardeñes J 2018 Spreading processes in multiplex metapopulations containing different mobility networks Phys. Rev. X 8 031039 · doi:10.1103/PhysRevX.8.031039
[34] Bosetti P et al 2019 Reducing measles risk in Turkey through social integration of Syrian refugees (arXiv:1901.04214)
[35] Gómez-Gardeñes J, Soriano-Paños D and Arenas A 2018 Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks Nat. Phys.14 391-5 · doi:10.1038/s41567-017-0022-7
[36] Diekmann O, Heesterbeek J A P and Metz J A J 1990 On the definition and computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations J. Math. Biol.28 365 · Zbl 0726.92018 · doi:10.1007/BF00178324
[37] Wesolowski A et al 2012 Quantifying the impact of human mobility on malaria Science338 267-70 · doi:10.1126/science.1223467
[38] España G et al 2018 Exploring scenarios of Chikungunya mitigation with a data-driven agent-based model of the 2014-2016 outbreak in Colombia Sci. Rep.8 12201 · doi:10.1038/s41598-018-30647-8
[39] Barmak D H, Dorso C O, Otero M and Solari H G 2011 Dengue epidemics and human mobility Phys. Rev. E 84 011901 · doi:10.1103/PhysRevE.84.011901
[40] De Domenico M, Granell C, Porter M and Arenas A 2016 The physics of spreading processes in multilayer networks Nat. Phys.12 901-6 · doi:10.1038/nphys3865
[41] Lotero L, Cardillo A, Hurtado R and Gómez-Gardeñes J 2016 Several multiplexes in the same city: the role of socioeconomic differences in urban mobility Interconnected Networks (Berlin: Springer) · Zbl 1376.90008 · doi:10.1007/978-3-319-23947-7_9
[42] Lotero L, Hurtado R G, Floría L M and Gómez-Gardeñes J 2016 Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes R. Soc. Open Sci.3 150654 · doi:10.1098/rsos.150654
[43] Barbosa-Filho H, Barthelemy M, Ghoshal G, James C R, Lenormand M, Louail T, Menezes R, Ramasco J J, Simini F and Tomasini M 2017 Human mobility: models and applications Phys. Rep.734 1 · Zbl 1395.91358 · doi:10.1016/j.physrep.2018.01.001
[44] Matamalas J T, De Domenico M and Arenas A 2016 Assessing reliable human mobility patterns from higher order memory in mobile communications J. R. Soc. Interface13 20160203 · doi:10.1098/rsif.2016.0203
[45] Lee M, Barbosa H, Youn H, Holme P and Ghoshal G 2017 Morphology of travel routes and the organization of cities Nat. Commun.8 2229 · doi:10.1038/s41467-017-02374-7
[46] Funk S, Salathé M and Jansen V A 2010 Modelling the influence of human behaviour on the spread of infectious diseases: a review J. R. Soc. Interface7 1247 · doi:10.1098/rsif.2010.0142
[47] Cardillo A, Reyes-Suárez C, Naranjo F and Gómez-Gardeñes J 2013 Evolutionary vaccination dilemma in complex networks Phys. Rev. E 88 032803 · doi:10.1103/PhysRevE.88.032803
[48] Steinegger B, Cardillo A, De Los Rios P, Gómez-Gardeñes J and Arenas A 2018 Interplay between cost and benefits triggers nontrivial vaccination uptake Phys. Rev. E 97 032308 · doi:10.1103/PhysRevE.97.032308
[49] Meloni S et al 2011 Modeling human mobility responses to the large-scale spreading of infectious diseases Sci. Rep.9 62 · doi:10.1038/srep00062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.