×

Opinion diversity and social bubbles in adaptive Sznajd networks. (English) Zbl 1456.91090

Summary: Among the several approaches that have been attempted at studying opinion dynamics, the Sznajd model provides some particularly interesting features, such as its simplicity and ability to represent some of the mechanisms believed to be involved in real-world opinion dynamics. The standard Sznajd model at zero temperature is characterized by converging to one stable state, implying null diversity of opinions. In the present work, we develop an approach – namely the adaptive Sznajd model – in which changes of opinion by an individual (i.e. a network node) implies in possible alterations in the network topology. This is accomplished by allowing agents to change their connections preferentially to other neighbors with the same state. The diversity of opinions along time is quantified in terms of the exponential of the entropy of the opinions density. Several interesting results are reported, including the possible formation of echo chambers or social bubbles. Additionally, depending on the parameters configuration, the dynamics may converge to different equilibrium states for the same parameter setting, which suggests that this phenomenon can be a phase transition. The average degree of the network strongly influences the resultant opinion distribution, which means that echo chambers are easily formed in systems with low link density.

MSC:

91D30 Social networks; opinion dynamics
05C82 Small world graphs, complex networks (graph-theoretic aspects)
37N40 Dynamical systems in optimization and economics

References:

[1] Dalla Porta L and Copelli M 2019 Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: continuously varying exponents mimic m/eeg results PLOS Comput. Biol.15 e1006924 · doi:10.1371/journal.pcbi.1006924
[2] Sznajd-Weron K and Sznajd J 2000 Opinion evolution in closed community Int. J. Mod. Phys. C 11 1157-65 · doi:10.1142/S0129183100000936
[3] Araújo M S, Vannucchi F S, Timpanaro A M and Prado C P C 2015 Mean-field approximation for the sznajd model in complex networks Phys. Rev. E 91 022813 · doi:10.1103/PhysRevE.91.022813
[4] Messias B, Silva F N, Comin C H and da Fontoura Costa L 2018 Can spatiality promote diversity? (arXiv:1809.00729)
[5] Jost L 2006 Entropy and diversity Oikos113 363-75 · doi:10.1111/j.2006.0030-1299.14714.x
[6] He M, Li B and Luo L 2004 Sznajd model with’ social temperature’ and defender on small-world networks Int. J. Mod. Phys. C 15 997-1003 · Zbl 1119.91364 · doi:10.1142/S0129183104006418
[7] Holme P and Newman M E J 2006 Nonequilibrium phase transition in the coevolution of networks and opinions Phys. Rev. E 74 056108 · doi:10.1103/PhysRevE.74.056108
[8] Fu F and Wang L 2008 Coevolutionary dynamics of opinions and networks: from diversity to uniformity Phys. Rev. E 78 016104 · doi:10.1103/PhysRevE.78.016104
[9] Durrett R, Gleeson J P, Lloyd A L, Mucha P J, Shi F, Sivakoff D, Socolar J E S and Varghese C 2012 Graph fission in an evolving voter model Proc. Natl Acad. Sci.109 3682-7 · Zbl 1256.91042 · doi:10.1073/pnas.1200709109
[10] Iniguez G, Kertész J, Kaski K K and Barrio R A 2009 Opinion and community formation in coevolving networks Phys. Rev. E 80 066119 · doi:10.1103/PhysRevE.80.066119
[11] Gracia-Lázaro C, Quijandría F, Hernández L, Floría L M and Moreno Y 2011 Coevolutionary network approach to cultural dynamics controlled by intolerance Phys. Rev. E 84 067101 · doi:10.1103/PhysRevE.84.067101
[12] Nikolov D, Oliveira D F M, Flammini A and Menczer F 2015 Measuring online social bubbles PeerJ Comput. Sci.1 e38 · doi:10.7717/peerj-cs.38
[13] Castellano C, Fortunato S and Loreto V 2009 Statistical physics of social dynamics Rev. Mod. Phys.81 591 · doi:10.1103/RevModPhys.81.591
[14] Gonzalez M C, Sousa A O and Herrmann H J 2004 Opinion formation on a deterministic pseudo-fractal network Int. J. Mod. Phys. C 15 45-57 · doi:10.1142/S0129183104005577
[15] Fortunato S 2005 The sznajd consensus model with continuous opinions Int. J. Mod. Phys. C 16 17-24 · Zbl 1105.91054 · doi:10.1142/S0129183105006917
[16] Dong Y, Zhan M, Kou G, Ding Z and Liang H 2018 A survey on the fusion process in opinion dynamics Inf. Fusion43 57-65 · doi:10.1016/j.inffus.2017.11.009
[17] Gomes P F, Reia S M, Rodrigues F A and Fontanari J F 2019 Mobility helps problem-solving systems to avoid groupthink Phys. Rev. E 99 032301 · doi:10.1103/PhysRevE.99.032301
[18] Vazquez F, Eguíluz V M and San Miguel M 2008 Generic absorbing transition in coevolution dynamics Phys. Rev. Lett.100 108702 · doi:10.1103/PhysRevLett.100.108702
[19] Axelrod R 1997 The dissemination of culture: a model with local convergence and global polarization J. Conflict Resolution41 203-26 · doi:10.1177/0022002797041002001
[20] Gracia-Lázaro C, Lafuerza L F, Floría L M and Moreno Y 2009 Residential segregation and cultural dissemination: an axelrod-schelling model Phys. Rev. E 80 046123 · doi:10.1103/PhysRevE.80.046123
[21] Rodríguez A H and Moreno Y 2010 Effects of mass media action on the axelrod model with social influence Phys. Rev. E 82 016111 · doi:10.1103/PhysRevE.82.016111
[22] Centola D, Gonzalez-Avella J C, Eguiluz V M and San Miguel M 2007 Homophily, cultural drift, and the co-evolution of cultural groups J. Conflict Resolution51 905-29 · doi:10.1177/0022002707307632
[23] Biely C, Hanel R and Thurner S 2009 Socio-economical dynamics as a solvable spin system on co-evolving networks Eur. Phys. J B 67 285-9 · doi:10.1140/epjb/e2008-00390-7
[24] Hegselmann R and Krause U 2002 Opinion dynamics and bounded confidence models, analysis, and simulation J. Artif. Soc. Soc. Simul.5
[25] Rodrigues F A and da Fontoura Costa L 2005 Surviving opinions in sznajd models on complex networks Int. J. Mod. Phys. C 16 1785-92 · Zbl 1115.91364 · doi:10.1142/S0129183105008278
[26] González M C, Sousa A O and Herrmann H J 2006 Renormalizing sznajd model on complex networks taking into account the effects of growth mechanisms Eur. Phys. J. B 49 253-7 · doi:10.1140/epjb/e2006-00049-5
[27] Bernardes A T, Stauffer D and Kertész J 2002 Election results and the sznajd model on barabasi network Eur. Phys. J. B 25 123-7 · doi:10.1140/e10051-002-0013-y
[28] Indekeu J O 2004 Special attention network Physica A 333 461-4 · doi:10.1016/j.physa.2003.10.081
[29] Leinster T and Cobbold C A 2012 Measuring diversity: the importance of species similarity Ecology93 477-89 · doi:10.1890/10-2402.1
[30] Travençolo B A N and da Fontoura Costa L 2008 Accessibility in complex networks Phys. Lett. A 373 89-95 · Zbl 1226.05233 · doi:10.1016/j.physleta.2008.10.069
[31] De Arruda G F, Barbieri A L, Rodríguez P M, Rodrigues F A, Moreno Y and da Fontoura Costa L 2014 Role of centrality for the identification of influential spreaders in complex networks Phys. Rev. E 90 032812 · doi:10.1103/PhysRevE.90.032812
[32] Betzel R F, Medaglia J D and Bassett D S 2018 Diversity of meso-scale architecture in human and non-human connectomes Nat. Commun.9 346 · doi:10.1038/s41467-017-02681-z
[33] Watts D J and Strogatz S H 1998 Collective dynamics of small-world networks Nature393 440 · Zbl 1368.05139 · doi:10.1038/30918
[34] Törnberg P 2018 Echo chambers and viral misinformation: modeling fake news as complex contagion PloS one13 e0203958 · doi:10.1371/journal.pone.0203958
[35] Jasny L, Waggle J and Fisher D R 2015 An empirical examination of echo chambers in us climate policy networks Nat. Clim. Change5 782 · doi:10.1038/nclimate2666
[36] Vicario M D, Quattrociocchi W, Scala A and Zollo F 2019 Polarization and fake news: early warning of potential misinformation targets ACM Trans. Web (TWEB)13 10 · doi:10.1145/3316809
[37] Del Vicario M, Bessi A, Zollo F, Petroni F, Scala A, Caldarelli G, Stanley H E and Quattrociocchi W 2015 Echo chambers in the age of misinformation (arXiv:1509.00189)
[38] Jasny L, Dewey A M, Robertson A G, Yagatich W, Dubin A H, Waggle J M and Fisher D R 2018 Shifting echo chambers in us climate policy networks PloS one13 e0203463 · doi:10.1371/journal.pone.0203463
[39] Silva F N, Amancio D R, Bardosova M, da Fontoura Costa L and Oliveira O N Jr 2016 Using network science and text analytics to produce surveys in a scientific topic J. Informetrics10 487-502 · doi:10.1016/j.joi.2016.03.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.