×

Protocell self-reproduction in a spatially extended metabolism-vesicle system. (English) Zbl 1451.92058

Summary: Cellular life requires the presence of a set of biochemical mechanisms in order to maintain a predictable process of growth and division. Several attempts have been made towards the building of minimal protocells from a top-down approach, i.e. by using available biomolecules. This type of synthetic approach has so far been only partially successful, and appropriate models of the synthetic protocell cycle might be needed to guide future experiments. In this paper, we present a simple biochemically and physically feasible model of cell replication involving a discrete semi-permeable vesicle with an internal minimal metabolism involving two reactive centers. It is shown that such a system can effectively undergo a whole cell replication cycle. The model can be used as a basic framework to model whole protocell dynamics including more complex sets of reactions. The possible implementation of our design in future synthetic protocells is outlined.

MSC:

92C15 Developmental biology, pattern formation
92C37 Cell biology

References:

[1] Alberts, B., Molecular Biology of the Cell (2005), Garland: Garland New York
[2] Bozic, B.; Svetina, S., A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction, Eur. Biophys. J., 33, 565-571 (2004)
[3] Curry, F. E., Mechanics and thermodynamics of transcapillary exchange, (Renkin, E. M.; Michel, C. C., Handbook of Physiology, Section 2, The Cardiovascular System (1984), American Physiological Society: American Physiological Society Bethesda), 309-374
[4] Discher, D. E.; Eisenberg, A., Polymer vesicles, Science, 297, 967-973 (2002)
[5] Du, Q.; Liu, C.; Wang, X., Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comput. Phys., 212, 757-777 (2005) · Zbl 1086.74024
[6] Hanczyc, M. M.; Szostak, J. W., Experimental models of primitive cellular compartments: encapsulation, growth, and division, Science, 302, 618-622 (2003)
[7] Hanczyc, M. M.; Szostak, J. W., Replicating vesicles as models of primitive cell growth and division, Curr. Opin. Chem. Biol., 8, 660-664 (2004)
[8] Kedem, O.; Katchalsky, A., Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27, 229-246 (1958)
[9] Lodish, H., Molecular Cell Biology (2005), Freeman: Freeman New York
[10] Luisi, P. L., Toward the engineering of minimal living cells, Anat. Rec., 268, 208-214 (2002)
[11] Luisi, P. L.; Ferri, F.; Stano, P., Approaches to semi-synthetic minimal cells: a review, Naturwissenschaften, 93, 1, 1-13 (2006)
[12] Macía, J., Solé, R.V., 2007. Synthetic Turing protocells: self-reproducing vesicles through symmetry-breaking instabilities. Phil. Trans. Royal Soc. Series B. to appear.
[13] Maynard Smith, J.; Szathmáry, E., The Major Transitions in Evolution (2001), Oxford University Press: Oxford University Press Oxford
[14] Morgan, J. J.; Surovtsev, I. V.; Lindahl, P. A., A framework for whole-cell mathematical modeling, J. Theor. Biol., 231, 581-596 (2004) · Zbl 1465.92043
[15] Munteanu, A.; Solé, R. V., Phenotypic diversity and chaos in protocell dynamics, J. Theor. Biol., 240, 434-442 (2006) · Zbl 1447.92124
[16] Noguchi, H.; Takasu, M., Adhesion of nanoparticles to vesicles: a Brownian dynamics simulation, Biophys. J., 83, 299-308 (2002)
[17] Oberholzer, T.; Luisi, P. L., The use of liposomes for constructing cell models, J. Biol. Phys., 28, 733-744 (2002)
[18] Oberholzer, T.; Wick, R.; Luisi, P. L.; Biebricher, C. K., Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell, Biochem. Biophys. Res. Commun., 207, 250-257 (1995)
[19] Oberholzer, T.; Albrizio, M.; Luisi, P. L., Polymerase chain reaction in liposomes, Chem. Biol., 2, 677-682 (2005)
[20] Oberholzer, T.; Nierhaus, K. H.; Luisi, P. L., Protein expression in liposomes, Biochem. Biophys. Res. Comm., 261, 238-241 (2005)
[21] Ono, N., Ikegami, T., 1999. Model of self-replicating cell capable of self-maintenance. In: Lecture Notes In Computer Science, vol. 1674. Springer, London, UK, pp. 399-406.
[22] Patankar, S., Numerical Heat Transfer and Fluid Flow (1980), Taylor & Francis: Taylor & Francis Washington, D.C. · Zbl 0521.76003
[23] Patlak, C. S.; Goldstein, D. A.; Hoffman, J. F., The flow of solute and solvent across a two-membrane system, J. Theor. Biol., 5, 426-442 (1963)
[24] Rashevsky, N., Mathematical Biophysics. Physico-matemathical Foundations of Biology, vol. I (1960), Dover: Dover New York
[25] Rasmussen, S.; Chen, L.; Deamer, D.; Krakauer, D. C.; Packard, N. H.; Stadler, P. F.; Bedau, M. A., Transitions from nonliving to living matter, Science, 303, 963-965 (2004)
[26] Schaff, J. C.; Slepchenki, B. M.; Choi, Y.-S.; Wagner, J.; Resasco, D.; Loew, L. M., Analysis of nonlinear dynamics on arbitrary geometries with the virtual cell, Chaos, 11, 115-131 (2001) · Zbl 0992.92021
[27] Solé, R.V., Munteanu, A., Rodríguez-Caso, J., Macia, J., 2007a. Synthetic protocell biology: from reproduction to computation. Phil. Trans. Royal Soc. Series B, to appear.
[28] Solé, R.V., Macía, J., Fellermann, H., Munteanu, A., Sardanyés, J., Valverde, S., 2007b. Models of protocell replication. In: Rasmussen, S., et al. (Eds.), Protocells: Bridging Living and Non-living Matter. MIT Press, Cambridge, MA, to appear.
[29] Szostack, W.; Bartel, D. P.; Luisi, P. L., Synthesizing life, Nature, 409, 387-390 (2001)
[30] (Walde, P.; Luisi, P. L., Giant Vesicles (2000), Wiley: Wiley Canada)
[31] White, S. H., Small phospholipids vesicles: internal pressure, surface tension, and surface free energy, Proc. Natl Acad. Sci. USA, 77, 4048-4050 (1980)
[32] Wiemar, J. R.; Boon, J. P., Class of cellular automata for reaction-diffusion systems, Phys. Rev. E, 49, 1749 (1994)
[33] Wolfe, J.; Dowgert, M. F.; Steponkus, P. L., Mechanical study of the deformation and rupture of the plasma membranes of protoplasts during osmotic expansions, J. Membrane Biol., 93, 63-74 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.