×

Application of the Nesvetay code for solving three-dimensional high-altitude aerodynamics problems. (English. Russian original) Zbl 1479.76066

Comput. Math. Math. Phys. 60, No. 4, 737-748 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 4, 752-764 (2020).
Summary: A survey of the capabilities of the Nesvetay code as applied to computing the flow of a high-speed monatomic gas around objects of irregular shape for large flight altitudes is given. An implicit numerical method on an arbitrary unstructured grid and a two-level approach to the organization of parallel computations are described. This code is compared with the well-known MONACO and SMILE codes that implement the direct simulation Monte Carlo method.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76N15 Gas dynamics (general theory)
65Y05 Parallel numerical computation
Full Text: DOI

References:

[1] Godunov, S. K., A difference method for the numerical calculation of discontinuous solutions to fluid dynamics equations, Mat. Sb., 47, 271-306 (1957) · Zbl 0171.46204
[2] Kolobov, V. I.; Arslanbekov, R. R.; Aristov, V. V.; Frolova, A. A.; Zabelok, S. A., Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys., 223, 589-608 (2007) · Zbl 1183.76851 · doi:10.1016/j.jcp.2006.09.021
[3] Yu. A. Anikin, Yu. Yu. Kloss, D. V. Martynov, and F. G. Cheremisin, “Computer simulation and analysis of the Knudsen experiment of 1910,” Nano Mikrosist. Tekhn., No. 8, 6-14 (2010).
[4] Arslanbekov, R. R.; Kolobov, V. I.; Frolova, A. A., Kinetic solvers with adaptive mesh in phase space, Phys. Rev. E, 88, 063301 (2013) · doi:10.1103/PhysRevE.88.063301
[5] Baranger, C.; Claudel, J.; Herouard, N.; Mieussens, L., Locally refined discrete velocity grids for stationary rarefied flow simulations, J. Comput. Phys., 257, 572-593 (2014) · Zbl 1349.76586 · doi:10.1016/j.jcp.2013.10.014
[6] Dimarco, G.; Loubere, R.; Narski, J., Towards an ultra efficient kinetic scheme. Part III: High-performance computing, J. Comput. Phys., 284, 22-39 (2015) · Zbl 1351.76233 · doi:10.1016/j.jcp.2014.12.023
[7] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[8] Shakhov, E. M., On a generalization of the relaxation kinetic Krook equation, Izv. Akad. Nauk SSSR, Ser. Mekh, Zhidkosti Gaza, No., 5, 142-145 (1968)
[9] Rykov, V. A., “Model kinetic equation for the gas with rotational degrees of freedom,”, Izv. Akad. Nauk SSSR, Ser. Mekh, Zhidkosti Gaza, No., 6, 107-115 (1975)
[10] V. A. Titarev, “Software package Nesvetay-3D for simulating three-dimensional flows of monoatomic rarefied gas,” Certificate of State Registration of computer programs 20176616295, 2017.
[11] Titarev, V. A., Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes, Comput. Math. Math. Phys., 50, 1719-1733 (2010) · Zbl 1224.76120 · doi:10.1134/S0965542510100088
[12] Titarev, V. A.; Dumbser, M.; Utyuzhnikov, S. V., Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions, J. Comput. Phys., 256, 17-33 (2014) · Zbl 1349.76741 · doi:10.1016/j.jcp.2013.08.051
[13] V. A. Titarev, “Software package Nesvetay-3D for simulating 3D flows of rarefied monatomic gas,” Nauka Obraz., No. 6, 124-154 (2014).
[14] Titarev, V. A., “Numerical modeling of high-speed rarefied gas flows over blunt bodies using model kinetic equations,” Europ. J. Mech. B Fluids, Special Issue on Non-equilibrium Gas Flows, 64, 112-117 (2017) · Zbl 1408.76463
[15] V. A. Titarev, “Application of model kinetic equations to hypersonic rarefied gas flows,” Comput. Fluids, Special issue “Nonlinear flow and transport,” 169, 62-70 (2018). · Zbl 1410.76413
[16] Kolgan, V. P., “Application of the minimum derivative principle for constructing finite difference schemes for the calculation of discontinuous solutions in fluid dynamics,” Uchen, Zapiski TsAGI, 3, 68-77 (1972)
[17] Kolgan, V. P., Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics, J. Comput. Phys., 230, 2384-2390 (2011) · Zbl 1316.76063 · doi:10.1016/j.jcp.2010.12.033
[18] Van Leer, B., Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[19] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077 · doi:10.1016/j.jcp.2006.06.043
[20] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. Comput. Phys., 226, 204-243 (2007) · Zbl 1124.65074 · doi:10.1016/j.jcp.2007.04.004
[21] T. J. Barth and P. O. Frederickson, “Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction,” AIAA paper no. 90-0013, 28th Aerospace Sciences Meeting, 1990.
[22] Rusanov, V. V., Computation of nonstationary shock waves with obstacles, Zh. Vychisl. Mat. Mat. Fiz., 1, 267-279 (1961)
[23] Titarev, V. A., Conservative numerical methods for model kinetic equations, Comput. Fluids, 36, 1446-1459 (2007) · Zbl 1194.76220 · doi:10.1016/j.compfluid.2007.01.009
[24] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 429-466 (2000) · Zbl 0984.76070 · doi:10.1006/jcph.2000.6548
[25] Gusarov, A. V.; Smurov, I., Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer, Phys. Fluids, 14, 4242-4255 (2002) · Zbl 1185.76158 · doi:10.1063/1.1516211
[26] Titarev, V. A., Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains, Comput. Math. Math. Phys., 49, 1197-1211 (2009) · Zbl 1224.76119 · doi:10.1134/S0965542509070112
[27] Yoon, S.; Jameson, A., Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J., 26, 1025-1026 (1988) · doi:10.2514/3.10007
[28] I. Men’shov and Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air flows in thermochemical nonequilibrium,” Collection of technical papers of 6th Int. Symp. on CFD, Lake Tahoe, Nevada, 1995, pp. 815-821.
[29] Petrov, M. N.; Tambova, A. A.; Titarev, V. A.; Utyuzhnikov, S. V.; Chikitkin, A. V., FlowModellium software package for calculating high-speed flows of compressible fluid, Comput. Math. Math. Phys., 58, 1865-1886 (2018) · Zbl 1446.76001 · doi:10.1134/S0965542518110118
[30] Chikitkin, A.; Petrov, M.; Titarev, V.; Utyuzhnikov, S., “Parallel versions of implicit LU-SGS method,” Special Iss, Lobachevskii J. Math. on Parallel Structure of Algorithms, 39, 503-512 (2018) · Zbl 1483.65051 · doi:10.1134/S1995080218040054
[31] Abalakin, I. V.; Bakhvalov, P. A.; Gorobets, A. V.; Duben’, A. P.; Kozubskaya, T. K., Parallel software package NOISETTE for large-scale computations of aerodynamical and aeroacoustics problems, Vych. Met. Program., 23, 110-125 (2012)
[32] Gorobets, A. V., Parallel algorithm of the NOISEtte code for CFD and CAA simulations, Lobachevskii J. Math., 39, 524-532 (2018) · Zbl 1442.76002 · doi:10.1134/S1995080218040078
[33] Aristov, V. V.; Zabelok, S. A., A deterministic method for solving the Boltzmann equation with parallel computations, Comput. Math. Math. Phys., 42, 406-418 (2002) · Zbl 1161.82336
[34] V. A. Titarev, Numerical simulation of 3D flows of rarefied gas using a supercomputer, Doctoral Dissertation in Mathematics and Physics (Federal Research Center “Computer Science and Control,” Russian Academy of Sciences Moscow, 2018).
[35] A. Semin, E. Druzhinin, V. Mironov, A. Shmelev, and A. Moskovsky, “The Performance characterization of the RSC PetaStream module,” 29th Int. Conf., ISC 2014, Leipzig, Lect. Notes Comput. Sci. 8488, 420-429, (2014).
[36] A. J. Lofthouse, “Nonequilibrium hypersonic aerothermodynamics using the direct simulation Monte Carlo and Navier-Stokes models, Ph.D. Thesis (The University of Michigan, 2008).
[37] Dietrich, S.; Boyd, I. D., Scalar and parallel optimized implementation of the direct simulation Monte Carlo method, J. Comput. Phys., 126, 328-342 (1996) · Zbl 0856.65002 · doi:10.1006/jcph.1996.0141
[38] Frolova, A. A.; Titarev, V. A., Recent progress on supercomputer modelling of high-speed rarefied gas flows using kinetic equations, Supercomput. Frontiers Innov., 5, 117-121 (2018)
[39] A. A. Frolova and V. A. Titarev, “Kinetic methods for solving nonstationary problems with streaming flows,” Mat. Mat. Model., No. 4, 27-44 (2018).
[40] Titarev, V. A.; Frolova, A. A., Application of model kinetic equations to calculations of super- and hypersonic molecular gas flows, Fluid Dyn., 53, 536-551 (2018) · Zbl 1407.76137 · doi:10.1134/S0015462818040110
[41] A. V. Kashkovsky, Ye. A. Bondar, G. A. Zhukova, M. S. Ivanov, and S. F. Gimelshein, “Object-oriented software design of real gas effects for the DSMC method,” 24th International Symposium on Rarefied Gas Dynamics, AIP Conf. Proc. 762, 583-588 (2004).
[42] M. S. Ivanov, A. V. Kashkovsky, S. F. Gimelshein, G. N. Markelov, A. A. Alexeenko, Ye. A. Bondar, G. A. Zhukova, S. B. Nikiforov, and P. V. Vashenkov, “SMILE System for 2D/3D DSMC computations,” Proc. of 25th Int. Symp. on RGD (Publishing House of the Siberian Branch of the Russian Academy of Sciences, 2007) pp. 539-544.
[43] M. Ivanov, A. Kashkovsky, P. Vashchenkov, and Y. Bondar, “Parallel object-oriented software system for DSMC modeling of high-altitude aerothermodynamic problems,” 27th Int. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc. 1333, 211-218 (2010).
[44] Shoev, G. V.; Bondar, Ye. A.; Oblapenko, G. P.; Kustova, E. V., Development and testing of a numerical simulation method for thermally nonequilibrium dissociating flows in ANSYS Fluen, Thermophys. Aeromech., 23, 151-164 (2016) · doi:10.1134/S0869864316020013
[45] Shevyrin, A. A.; Bondar, Ye. A.; Kalashnikov, S. T.; Khlybov, V. I.; Degtyar’, V. G., Direct simulation of rarefied high-enthalpy flow around the RAM C-II capsule, High Temp., 54, 383-389 (2016) · doi:10.1134/S0018151X16030184
[46] Molchanova, A.; Kashkovsky, A.; Bondar, Ye., Surface recombination in the direct simulation Monte Carlo method, Phys. Fluids, 30, 107105 (2018) · doi:10.1063/1.5048353
[47] Titarev, V. A.; Frolova, A. A.; Rykov, V. A.; Vashchenkov, P. V.; Shevyrin, A. A.; Bondar, Ye. A., Comparison of the Shakhov kinetic equation and DSMC method as applied to space vehicle aerothermodynamics, J. Comput. Appl. Math., 364, 1-12 (2020) · Zbl 1457.80007 · doi:10.1016/j.cam.2019.112354
[48] Voevodin, Vl.; Antonov, A.; Nikitenko, D.; Shvets, P.; Sobolev, S.; Sidorov, I.; Stefanov, K., Vad. Voevodin, and S. Zhumatiy, “Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community, Supercomput. Frontiers Innov., 6, 4-11 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.