×

Discontinuous Galerkin isogeometric analysis for elliptic problems with discontinuous diffusion coefficients on surfaces. (English) Zbl 1450.65148

Summary: This paper is concerned with using discontinuous Galerkin isogeometric analysis (dG-IGA) as a numerical treatment of diffusion problems on orientable surfaces \(\Omega \subset \mathbb{R}^3\). The computational domain or surface considered consists of several non-overlapping subdomains or patches which are coupled via an interior penalty scheme. In [U. Langer and the author, Lect. Notes Comput. Sci. Eng. 104, 319–326 (2016; Zbl 1339.65219)], we presented a priori error estimate for conforming computational domains with matching meshes across patch interface and a constant diffusion coefficient. However, in this article, we generalize the a priori error estimate to non-matching meshes and discontinuous diffusion coefficients across patch interfaces commonly occurring in industry. We construct B-spline or NURBS approximation spaces which are discontinuous across patch interfaces. We present a priori error estimate for the symmetric discontinuous Galerkin scheme and numerical experiments to confirm the theory.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
74S22 Isogeometric methods applied to problems in solid mechanics

Citations:

Zbl 1339.65219

Software:

G+Smo

References:

[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics 140, Elsevier/Academic Press, second edition (2008)
[2] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, JA; Hughes, TJR; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2006)
[3] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods, Acta Numerica, 23, 5, 157-287 (2014) · Zbl 1398.65287 · doi:10.1017/S096249291400004X
[4] Dede, L.; Quarteroni, A., Isogeometric analysis for second order partial differential equations on surfaces, Comput. Methods Appl. Mech Engrg., 284, 807-834 (2015) · Zbl 1425.65156 · doi:10.1016/j.cma.2014.11.008
[5] Dedner, A.; Madhavan, P.; Stinner, B., Analysis of the discontinuous Galerkin method for elliptic problems on surfaces, IMA J. Numer Anal., 33, 3, 952-973 (2013) · Zbl 1277.65095 · doi:10.1093/imanum/drs033
[6] Di Pietro, DA; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, volume 69 of Mathématiques et Applications (2012), Heidelberg: Springer, Heidelberg · Zbl 1231.65209
[7] Dziuk, G.; Elliott, CM, Finite element methods for surface PDEs, Acta Numerica, 22, 289-396 (2013) · Zbl 1296.65156 · doi:10.1017/S0962492913000056
[8] Evans, JA; Hughes, TJR, Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements, Numer. Math., 123, 2, 259-290 (2013) · Zbl 1259.65169 · doi:10.1007/s00211-012-0484-6
[9] Hofer, C., Analysis of discontinuous Galerkin dual-primal isogeometric tearing and interconnecting methods, Math. Models Methods Appl. Sci., 28, 1, 131-158 (2018) · Zbl 1379.65088 · doi:10.1142/S0218202518500045
[10] Hughes, TJR; Cottrell, JA; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419 · doi:10.1016/j.cma.2004.10.008
[11] Jüttler, B.; Langer, U.; Mantzaflaris, A.; Moore, SE; Zulehner, W., Geometry + simulation modules: implementing isogeometric analysis, PAMM, 14, 1, 961-962 (2014) · doi:10.1002/pamm.201410461
[12] Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discontinuous Galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isogeometric Analysis and Applications 2014, volume 107 of Lecture Notes in Computational Science and Engineering, pp 1-32. Springer (2015) · Zbl 1334.65194
[13] Langer, U., Moore, S.E.: Domain decomposition methods in science and engineering xxii. In: Dickopf, T., Gander, J.M., Halpern, L., Krause, R., Luca Pavarino, F. (eds.) Domain Decomposition Methods in Science and Engineering XXII, chapter Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs on Surfaces, pp 319-326. Springer, Cham (2016)
[14] Moore, S.E.: Nonstandard Discretization Strategies In Isogeometric Analysis for Partial Differential Equations. PhD thesis, Johannes Kepler University (2017)
[15] Moore, SE, Discontinuous Galerkin isogeometric analysis for the biharmonic equation, Comput. Math. Appl., 76, 4, 673-685 (2018) · Zbl 1428.65092 · doi:10.1016/j.camwa.2018.05.001
[16] Shahbazi, K., An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys., 205, 2, 401-407 (2005) · Zbl 1072.65149 · doi:10.1016/j.jcp.2004.11.017
[17] Wloka, J., Partial Differential Equations (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0623.35006
[18] Wu, M.; Wang, Y.; Mourrain, B.; Nkonga, B.; Cheng, C., Convergence rates for solving elliptic boundary value problems with singular parameterizations in isogeometric analysis, Comput. Aided Geometric Des., 52-53, 170-189 (2017) · Zbl 1366.65098 · doi:10.1016/j.cagd.2017.02.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.