×

New zeroing neural dynamics models for diagonalization of symmetric matrix stream. (English) Zbl 1451.65059

Summary: In this paper, the problem of diagonalizing a symmetric matrix stream (or say, time-varying matrix) is investigated. To fulfill our goal of diagonalization, two error functions are constructed. By making the error functions converge to zero with zeroing neural dynamics (ZND) design formulas, a continuous ZND model is established and its effectiveness is then substantiated by simulative results. Furthermore, a Zhang et al. discretization (ZeaD) formula with high precision is developed to discretize the continuous ZND model. Thus, a new 5-point discrete ZND (DZND) model is further proposed for diagonalization of matrix stream. Theoretical analyses prove the stability and convergence of the 5-point DZND model. In addition, simulative experiments are carried out, of which the results substantiate not only the efficacy of the proposed 5-point DZND model but also its higher computational precision as compared with the conventional Euler-type and 4-point DZND models for diagonalization of symmetric matrix stream.

MSC:

65F99 Numerical linear algebra
15A20 Diagonalization, Jordan forms
Full Text: DOI

References:

[1] Parlett, GN, The Symmetric Eigenvalue Problem (1998), New Jersey: Prentice Hall, New Jersey
[2] Mayer, C.D.: Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (2000) · Zbl 0962.15001
[3] Golub, GH; Van Loan, CF, Matrix Computations (2013), Baltimore: The Johns Hopkins University Press, Baltimore · Zbl 1268.65037
[4] Jarlebring, E.; Koskela, A.; Mele, G., Disguised and new quasi-Newton methods for nonlinear eigenvalue problems, Numer. Algorithms, 79, 311-335 (2018) · Zbl 1398.65108 · doi:10.1007/s11075-017-0438-2
[5] Zhao, K.; Cheng, L.; Li, S., A new updating method for the damped mass-spring systems, Appl. Math. Model., 62, 119-133 (2018) · Zbl 1460.70017 · doi:10.1016/j.apm.2018.05.024
[6] Yang, P.; Shang, P., Recurrence quantity analysis based on matrix eigenvalues, Commun. Nonlinear. Sci., 59, 15-29 (2018) · Zbl 1510.37126 · doi:10.1016/j.cnsns.2017.11.001
[7] Lee, Z.; Hambach, R.; Kaiser, U.; Rose, H., Significance of matrix diagonalization in modelling inelastic electron scattering, Ultramicroscopy, 175, 58-66 (2017) · doi:10.1016/j.ultramic.2016.11.011
[8] Al-Bahrani, LT; Patra, JC, A novel orthogonal PSO algorithm based on orthogonal diagonalization, Swarm Evol. Comput., 40, 1-23 (2018) · doi:10.1016/j.swevo.2017.12.004
[9] Chen, K.; Yi, C., Robustness analysis of a hybrid of recursive neural dynamics for online matrix inversion, Appl. Math. Comput., 273, 969-975 (2016) · Zbl 1410.65078
[10] Xiao, L., A finite-time convergent Zhang neural network and its application to real-time matrix square root finding, Neural. Comput. Appl., 10, 1-8 (2017)
[11] Guo, D.; Nie, Z.; Yan, L., Novel discrete-time Zhang neural network for time-varying matrix inversion, IEEE Trans. Syst., Man, Cybern. Syst., 47, 2301-2310 (2017) · doi:10.1109/TSMC.2017.2656941
[12] Xiao, L.; Liao, B.; Li, S.; Chen, K., Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations, Neural Netw., 98, 103-113 (2018) · Zbl 1441.93265 · doi:10.1016/j.neunet.2017.11.011
[13] Zhang, Y.; Qi, Z.; Li, J.; Qiu, B.; Yang, M., Stepsize domain confirmation and optimum of ZeaD formula for future optimization, Numer. Algorithms, 81, 561-573 (2019) · Zbl 1435.65097 · doi:10.1007/s11075-018-0561-8
[14] Xiao, L.; Li, S.; Yang, J.; Zhang, Z., A new recurrent neural network with noise-tolerance and finite-time convergence for dynamic quadratic minimization, Neurocomputing, 285, 125-132 (2018) · doi:10.1016/j.neucom.2018.01.033
[15] Jin, L.; Li, S.; Hu, B., RNN models for dynamic matrix inversion: a control-theoretical perspective, IEEE Trans. Ind. Inform., 14, 189-199 (2018) · doi:10.1109/TII.2017.2717079
[16] Petkovic, MD; Stanimirovic, PS; Katsilis, VN, Modified discrete iterations for computing the inverse and pseudoinverse of the time-varying matrix, Neurocomputing, 289, 155-165 (2018) · doi:10.1016/j.neucom.2018.02.005
[17] Baumann, M., Helmke, U.: Diagonalization of time-varying symmetric matrices. In: Proceedings of International Conference on Computational Science (ICCS), Amsterdam, Netherlands, pp. 419-428 (2002) · Zbl 1056.65039
[18] Zhang, Y.; Yi, C., Zhang Neural Networks and Neural-Dynamic Method (2011), New York: Nova Science Publishers, New York
[19] Zhang, Y.; Xiao, L.; Xiao, Z.; Mao, M., Zeroing Dynamics, Gradient Dynamics, and Newton Iterations (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1366.37003
[20] Qiu, B.; Zhang, Y.; Yang, Z., Analysis, verification and comparison on feedback-aided Ma equivalence and Zhang equivalency of minimum-kinetic-energy type for kinematic control of redundant robot manipulators, Asian J. Control, 20, 2154-2170 (2018) · Zbl 1407.93267 · doi:10.1002/asjc.1706
[21] Li, J.; Mao, M.; Uhlig, F.; Zhang, Y., Z-type neural-dynamics for time-varying nonlinear optimization under a linear equality constraint with robot application, J. Comput. Appl. Math., 327, 155-166 (2018) · Zbl 1378.90077 · doi:10.1016/j.cam.2017.06.017
[22] Xiao, L.; Liao, B.; Li, S.; Zhang, Z.; Ding, L.; Jin, L., Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator, IEEE Trans. Ind. Inform., 14, 98-105 (2018) · doi:10.1109/TII.2017.2717020
[23] Qiao, S.; Wang, X.; Wei, Y., Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra Appl., 542, 101-117 (2018) · Zbl 1415.15007 · doi:10.1016/j.laa.2017.03.014
[24] Jin, L.; Zhang, Y., Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization, Numer. Algorithms, 73, 115-140 (2016) · Zbl 1351.65036 · doi:10.1007/s11075-015-0088-1
[25] Guo, D.; Lin, X.; Su, Z.; Sun, S.; Huang, Z., Design and analysis of two discrete-time ZD algorithms for time-varying nonlinear minimization, Numer. Algorithms, 77, 23-36 (2018) · Zbl 1382.65174 · doi:10.1007/s11075-017-0302-4
[26] Zhang, Y.; Chou, Y.; Zhang, Z.; Xiao, L., Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas, J. Comput. Appl. Math., 239, 406-414 (2013) · Zbl 1255.65066 · doi:10.1016/j.cam.2012.09.011
[27] Jin, L.; Zhang, Y., Discrete-time Zhang neural network for online time-varying nonlilnear optimazation with application to manupulator motion generation, IEEE Trans. Neural Netw. Learn. Syst., 26, 1525-1531 (2015) · doi:10.1109/TNNLS.2014.2342260
[28] Mathews, JH; Fink, KD, Numerical Methods Using MATLAB (2004), New Jersey: Prentice Hall, New Jersey
[29] Jin, L.; Zhang, Y., Discrete-time Zhang neural network of O(τ3) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation, Neurocomputing, 142, 165-173 (2014) · doi:10.1016/j.neucom.2014.04.051
[30] Zhang, Y.; Yang, M.; Li, J.; He, L.; Wu, S., ZFD formula 4IgSFD_Y applied to future minimization, Phys. Lett. A, 381, 1677-1681 (2017) · Zbl 1378.82042 · doi:10.1016/j.physleta.2017.03.025
[31] Shi, Y.; Qiu, B.; Chen, D.; Li, J.; Zhang, Y., Proposing and validation of a new four-point finite-difference formula with manipulator application, IEEE Trans. Ind. Inform., 14, 1323-1333 (2018) · doi:10.1109/TII.2017.2787799
[32] Griffiths, DF; Higham, DJ, Numerical Methods for Ordinary Differential Equations: Initial Value Problems (2010), London: Springer, London · Zbl 1209.65070
[33] Suli, E.; Mayers, DF, An Introduction to Numerical Analysis (2003), Cambridge: Cambridge University Press, Cambridge · Zbl 1033.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.