×

Parallel coupling numerics for partitioned fluid-structure interaction simulations. (English) Zbl 1443.65164

Summary: Within the last decade, very sophisticated numerical methods for the iterative and partitioned solution of fluid-structure interaction problems have been developed that allow for high accuracy and very complex scenarios. The combination of these two aspects – accuracy and complexity – demands very high computational grid resolutions and, thus, high performance computing methods designed for massively parallel hardware architectures. For those architectures, currently used coupling methods, which mainly work with a staggered execution of the fluid and the structure solver, i.e., the execution of one solver after the other in every outer iteration, lead to severe load imbalances: if the flow solver, e.g., scales on a very large number of processors but the structural solver does not due to its limited amount of data and required operations, almost all processors assigned to the coupled simulations are idle during the execution of the structure solver. We propose two new iterative coupling methods that allow for the simultaneous execution of flow and structure solvers. In both cases, we show that pure fixed-point iterations based on the parallel execution of the solvers do not lead to good results, but the combination of parallel solver execution and so-called quasi-Newton methods yields very efficient and robust methods. Those methods are known to be very efficient also for the stabilization of critical scenarios solved with the standard staggered solver execution. We demonstrate the competitive convergence of our methods for various established benchmark scenarios. Both methods are perfectly suited for use with black-box solvers because the quasi-Newton approach uses solely input and output information of the solvers to approximate the effect of the unknown Jacobians that would be required in a standard Newton solver.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76B99 Incompressible inviscid fluids
Full Text: DOI

References:

[1] Le Tallec, P.; Gerbeau, J.-F.; Hauret, P.; Vidrascu, M., Fluid structure interaction problems in large deformation, C. R. Méc., 333, 910-922 (2005) · Zbl 1173.76387
[2] Farhat, C., CFD-Based Nonlinear Computational Aeroelasticity (2004), John Wiley & Sons, Ltd.
[3] Farhat, C.; Geuzaine, P.; Brown, G., Application of a three-field nonlinear fluid-structure formulation to the prediction of the aeroelastic parameters of an f-16 fighter, Comput. & Fluids, 32, 3-29 (2003) · Zbl 1009.76518
[4] Schäfer, F.; Müller, S.; Uffinger, T.; Becker, S.; Grabinger, J.; Kaltenbacher, M., Fluid-structure-acoustic interaction of the flow past a thin flexible structure, AIAA J., 48, 738-748 (2010)
[5] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational Fluid-Structure Interaction: Methods and Applications (2013), Wiley · Zbl 1286.74001
[7] Tezduyar, T. E.; Takizawa, K.; Moorman, C.; Wright, S.; Christopher, J., Space-time finite element computation of complex fluid-structure interactions, Internat. J. Numer. Methods Fluids, 64, 1201-1218 (2010) · Zbl 1427.76148
[8] Link, G.; Kaltenbacher, M.; Breuer, M.; Döllinger, M., A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation, Comput. Methods Appl. Mech. Engrg., 198, 3321-3334 (2009) · Zbl 1230.74188
[9] Felippa, C.; Park, K.; Farhat, C., Partitioned analysis of coupled mechanical systems, Eng. Comput., 123-133 (2001) · Zbl 0985.76075
[10] Tezduyar, T. E.; Sathe, S.; Keedy, R.; Stein, K., Space-time finite element techniques for computation of fluid-structure interactions, Comput. Methods Appl. Mech. Engrg., 195, 2002-2027 (2006) · Zbl 1118.74052
[11] Barker, A. T.; Cai, X.-C., Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys., 229, 642-659 (2010) · Zbl 1253.76137
[12] Gee, M.; Küttler, U.; Wall, W., Truly monolithic algebraic multigrid for fluid-structure interaction, Internat. J. Numer. Methods Engrg., 85, 987-1016 (2011) · Zbl 1217.74121
[13] Badia, S.; Quaini, A.; Quarteroni, A., Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30, 1778-1805 (2008) · Zbl 1368.74021
[14] Ross, M. R.; Felippa, C. A.; Park, K.; Sprague, M. A., Treatment of acoustic fluid-structure interaction by localized Lagrange multipliers: Formulation, Comput. Methods Appl. Mech. Engrg., 197, 3057-3079 (2008) · Zbl 1194.74471
[15] Keyes, D.; McInnes, L.; Woodward, C.; Gropp, W.; Myra, E.; Pernice, M.; Bell, J.; Brown, J.; Clo, A.; Connors, J.; Constantinescu, E.; Estep, D.; Evans, K.; Farhat, C.; Hakim, A.; Hammond, G.; Hansen, G.; Hill, J.; Isaac, T.; Jiao, X.; Jordan, K.; Kaushik, D.; Kaxiras, E.; Koniges, A.; Lee, K.; Lott, A.; Lu, Q.; Magerlein, J.; Maxwell, R.; McCourt, M.; Mehl, M.; Pawlowski, R.; Randles, A.; Reynolds, D.; Rivière, B.; Rüde, U.; Scheibe, T.; Shaeudid, J.; Sheehan, B.; Shephard, M.; Siegel, A.; Smith, B.; Tang, X.; Wilson, C.; Wohlmuth, B., Multiphysics simulations: Challenges and opportuni- ties, Int. J. High Perform. Comput. Appl., 27 (2013)
[16] Burman, E.; Fernández, M. A., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg., 198, 766-784 (2009) · Zbl 1229.76045
[17] Bazilevs, Y.; Hsu, M.-C.; Kiendl, J.; Wüchner, R.; Bletzinger, K.-U., 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades, Internat. J. Numer. Methods Fluids, 65, 236-253 (2011) · Zbl 1428.76087
[18] Birken, P.; Quint, K.; Hartmann, S.; Meister, A., A time-adaptive fluid-structure interaction method for thermal coupling, Comput. Vis. Sci., 13, 331-340 (2010) · Zbl 1273.76369
[19] Bungartz, H.-J.; Benk, J.; Gatzhammer, B.; Mehl, M.; Neckel, T., Partitioned simulation of fluid-structure interaction on cartesian grids, (Bungartz, H.-J.; Mehl, M.; Schäfer, M., Fluid Structure Interaction II. Fluid Structure Interaction II, Lecture Notes in Computational Science and Engineering, vol. 73 (2010), Springer: Springer Berlin, Heidelberg), 255-284 · Zbl 1213.74110
[20] Farhat, C.; Lesoinne, M., Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems, Comput. Methods Appl. Mech. Engrg., 182, 499-515 (2000) · Zbl 0991.74069
[21] Gatzhammer, B., Efficient and flexible partitioned simulation of fluid-structure interactions (2015), Technische Universität München, Institut für Informatik, (Ph.D. thesis)
[22] Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E., Computation of fluid-structure interaction on lightweight structures, J. Wind Eng. Ind. Aerodyn., 89, 1351-1368 (2001)
[23] Matthies, H. G.; Steindorf, J., Partitioned strong coupling algorithms for fluid-structure interaction, Comput. Struct., 81, 805-812 (2003)
[25] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Engrg., 196, 1278-1293 (2007) · Zbl 1173.74418
[26] van Brummelen, E. H., Added mass effects of compressible and incompressible flows in fluid-structure interaction, J. Appl. Mech., 76 (2009)
[27] Küttler, U.; Wall, W. A., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 61-72 (2008) · Zbl 1236.74284
[28] Degroote, J.; Bathe, K.-J.; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput. Struct., 87, 793-801 (2009)
[29] Haelterman, R.; Degroote, J., The quasi-Newton least squares method: A new and fast secant method analyzed for linear systems, SIAM J. Numer. Anal., 47, 2347-2368 (2009) · Zbl 1197.65041
[30] Michler, C.; van Brummelen, E. H.; de Borst, R., An interface Newton-Krylov solver for fluid-structure interaction, Internat. J. Numer. Methods Fluids, 47, 1189-1195 (2004) · Zbl 1069.76033
[31] Vierendeels, J.; Lanoye, L.; Degroote, J.; Verdonck, P., Implicit coupling of partitioned fluid-structure interaction problems with reduced order models, Comput. Struct., 85, 970-976 (2007)
[32] Degroote, J.; Vierendeels, J., Multi-level quasi-Newton coupling algorithms for the partitioned simulation of fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 225-228, 14-27 (2012) · Zbl 1253.74033
[34] van Brummelen, E. H.; van der Zee, K. G.; de Borst, R., Space/time multigrid for a fluid-structure-interaction problem, Appl. Numer. Math., 58, 1951-1971 (2008), Special Issue in Honor of Piet Hemker · Zbl 1148.74046
[35] Zuijlen, A.; Bijl, H., Multi-level accelerated sub-iterations for fluid-structure interaction, (Bungartz, H.-J.; Mehl, M.; Schäfer, M., Fluid Structure Interaction II. Fluid Structure Interaction II, Lecture Notes in Computational Science and Engineering, vol. 73 (2010), Springer: Springer Berlin, Heidelberg), 1-25 · Zbl 1216.74007
[36] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 7027-7051 (2008) · Zbl 1140.74010
[37] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, J. Comput. Phys., 269, 108-137 (2014) · Zbl 1349.74373
[38] Degroote, J.; Swillens, A.; Bruggeman, P.; Haelterman, R.; Segers, P.; Vierendeels, J., Simulation of fluid-structure interaction with the interface artificial compressibility method, Int. J. Numer. Methods Biomed. Eng., 26, 276-289 (2010) · Zbl 1406.74193
[39] Nobile, F.; Vergara, C., An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comput., 30, 731-763 (2008) · Zbl 1168.74038
[40] Dörfel, M.; Simeon, B., Fluid-Structure interaction: Acceleration of Strong coupling by preconditioning of the fixed-point iteration, (Angiani, A.; Davidchack, R. L.; Georgoulis, E.; Gorban, A. N.; Levesley, J.; Tretyakov, M. V., Numerical Mathematics and Advanced Applications 2011 (2011), Springer: Springer Berlin, Heidelberg), 741-749 · Zbl 1311.74037
[42] Gerbeau, J.-F.; Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows, ESAIM Math. Model. Numer. Anal., 37, 631-647 (2003) · Zbl 1070.74047
[43] Casoni, E.; Houzeaux, G.; Vázquez, M., Parallel aspects of fluid-structure interaction, Procedia Eng., 61, 117-121 (2013)
[44] Degroote, J.; Vierendeels, J., Multi-solver algorithms for the partitioned simulation of fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 200, 2195-2210 (2011) · Zbl 1230.74243
[45] Kuberry, P.; Lee, H., A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods Appl. Mech. Engrg., 267, 594-605 (2013) · Zbl 1286.74031
[46] Irons, B.; Tuck, R., A version of the aitken accelerator for computer iteration, Internat. J. Numer. Methods Engrg., 1, 275-277 (1969) · Zbl 0256.65021
[48] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Fluid-structure algorithms based on steklov-poincaré operators, Comput. Methods Appl. Mech. Engrg., 195, 5797-5812 (2006), John H. Argyris Memorial Issue. Part II · Zbl 1124.76026
[49] Degroote, J.; Bruggeman, P.; Haelterman, R.; Vierendeels, J., Stability of a coupling technique for partitioned solvers in FSI applications, Comput. Struct., 86, 2224-2234 (2008)
[50] van Brummelen, E. H., Partitioned iterative solution methods for fluid-structure interaction, Internat. J. Numer. Methods Fluids, 65, 3-27 (2011) · Zbl 1427.74049
[51] Michler, C.; van Brummelen, E. H.; de Borst, R., An investigation of Interface-GMRES(R) for fluid-structure interaction problems with flutter and divergence, Comput. Mech., 47, 17-29 (2011) · Zbl 1398.74086
[52] Smith, B.; Bjorstad, P.; Gropp, W., Domain Decomposition—Parallel Multilevel Methods for Elliptic Partial Differential Equations (1996), Camebridge Univ. Pr. · Zbl 0857.65126
[53] Vierendeels, J.; Dumont, K.; Dick, E.; Verdonck, P., Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion, AIAA J., 43, 2549-2557 (2005)
[54] Vierendeels, J.; Degroote, J.; Annerel, S.; Haelterman, R., Stability issues in partitioned FSI calculations, (Bungartz, H.-J.; Mehl, M.; Schäfer, M., Fluid Structure Interaction II. Fluid Structure Interaction II, Lecture Notes in Computational Science and Engineering (2010), Springer: Springer Heidelberg, Berlin), 83-102 · Zbl 1211.76075
[55] de Boer, A.; van Zuijlen, A. H.; Bijl, H., Comparison of conservative and consistent approaches for the coupling of non-matching meshes, Comput. Methods Appl. Mech. Engrg., 197, 4284-4297 (2008) · Zbl 1194.74559
[57] Brenk, M., Algorithmic aspects of fluid-structure interactions on cartesian grids (German: Algorithmische Aspekte der Fluid-Struktur-Wechselwirkung auf kartesischen Gittern) (2007), Technische Universität München, (Ph.D. thesis)
[58] Beckert, A.; Wendland, H., Multivariate interpolation for fluid-structure-interaction problems using radial basis functions, Aerosp. Sci. Technol., 5, 125-134 (2001) · Zbl 1034.74018
[61] Cardiff, P., Development of the finite volume method for hip joint stress analysis (2012), School of Mechanical and Materials Engineering, (Ph.D. thesis)
[62] Turek, S.; Hron, J., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, (Bungartz, H.-J.; Schäfer, M., Fluid-Structure Interaction. Fluid-Structure Interaction, Lecture Notes in Computational Science and Engineering, vol. 53 (2006), Springer: Springer Berlin, Heidelberg), 371-385 · Zbl 1323.76049
[63] Richter, T., Goal-oriented error estimation for fluid-structure interaction problems, Comput. Methods Appl. Mech. Eng., 223-224, 28-42 (2012) · Zbl 1253.74037
[64] Fernández, M.Á.; Moubachir, M., A Newton method using exact jacobians for solving fluid-structure coupling, Comput. Struct., 83, 127-142 (2005)
[65] Bathe, K.-J.; Ledezma, G. A., Benchmark problems for incompressible fluid flows with structural interactions, Comput. Struct., 85, 628-644 (2007)
[66] Crosetto, P.; Deparis, S.; Fourestey, G.; Quarteroni, A., Parallel algorithms for fluid-structure interaction problems in haemodynamics, SIAM J. Sci. Comput., 33, 1598-1622 (2011) · Zbl 1417.92008
[68] Bungartz, H.-J.; Klimach, H.; Krupp, V.; Lindner, F.; Mehl, M.; Roller, S.; Uekermann, B., Fluid-acoustics interaction on massively parallel systems, (Mehl, M.; Bischoff, M.; Schäfer, M., Receht Trends in Computational Engineering—CE2014. Receht Trends in Computational Engineering—CE2014, Lecture Notes in Computational Science and Engineering, vol. 105 (2015), Springer: Springer Berlin, Heidelberg), 151-166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.