×

The simplest nonconforming mixed finite element method for linear elasticity in the symmetric formulation on \(n\)-rectangular grids. (English) Zbl 1443.65338

Summary: A family of mixed finite elements is proposed for solving the first order system of linear elasticity equations in any space dimension, where the stress field is approximated by symmetric finite element tensors. This family of elements has a perfect matching between the stress and the displacement. The discrete spaces for the normal stress \(\tau_{ii}\), the shear stress \(\tau_{ij}\) and the displacement \(u_i\) are \(\operatorname{span}\{1,x_i\}\), \(\operatorname{span}\{1,x_i,x_j\}\) and \(\operatorname{span} \{1 \}\), respectively, on rectangular grids. In particular, the definition remains the same for all space dimensions. As a result of these choices, the theoretical analysis is independent of the spatial dimension as well. In 1D, the element is nothing else but the 1D Raviart-Thomas element, which is the only conforming element in this family. In 2D and higher dimensions, they are new elements but of the minimal degrees of freedom. The total degrees of freedom per element are 2 plus 1 in 1D, 7 plus 2 in 2D, and 15 plus 3 in 3D. These elements are the simplest element for any space dimension.
The well-posedness condition and the optimal a priori error estimate of the family of finite elements are proved. Numerical tests in 2D and 3D are presented to show a superiority of the new elements over others, as a superconvergence is exhibited and proved.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Arnold, D. N.; Douglas, J.; Gupta, C. P., A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22 (1984) · Zbl 0558.73066
[2] Johnson, C.; Mercier, B., Some equilibrium finite element methods for two-dimensional elasticity problems, Numer. Math., 30, 103-116 (1978) · Zbl 0427.73072
[3] Amara, M.; Thomas, J. M., Equilibrium finite elements for the linear elastic problem, Numer. Math., 33, 367-383 (1979) · Zbl 0401.73079
[4] Arnold, D. N.; Brezzi, F.; Douglas, J., PEERS: A new mixed finite element for plane elasticity, Jpn. J. Appl. Math., 1, 347-367 (1984) · Zbl 0633.73074
[5] Boffi, D.; Brezzi, F.; Fortin, M., Reduced symmetry elements in linear elasticity, Commun. Pure Appl. Anal., 8, 95-121 (2009) · Zbl 1154.74041
[6] Morley, M., A family of mixed finite elements for linear elasticity, Numer. Math., 55, 633-666 (1989) · Zbl 0671.73054
[7] Stenberg, R., On the construction of optimal mixed finite element methods for the linear elasticity problem, Numer. Math., 48, 447-462 (1986) · Zbl 0563.65072
[8] Stenberg, R., Two low-order mixed methods for the elasticity problem, (Whiteman, J. R., The Mathematics of Finite Elements and Applications, VI (1988), Academic Press: Academic Press London), 271-280 · Zbl 0686.73049
[9] Stenberg, R., A family of mixed finite elements for the elasticity problem, Numer. Math., 53, 513-538 (1988) · Zbl 0632.73063
[10] Qiu, W. F.; Demkowicz, L., Mixed hp-finite element method for linear elasticity with weakly imposed symmetry, Comput. Methods Appl. Mech. Engrg., 198, 3682-3701 (2009) · Zbl 1230.74195
[11] Arnold, D. N.; Winther, R., Mixed finite element for elasticity, Numer. Math., 92, 401-419 (2002) · Zbl 1090.74051
[12] Arnold, D.; Awanou, G.; Winther, R., Finite elements for symmetric tensors in three dimensions, Math. Comp., 77, 1229-1251 (2008) · Zbl 1285.74013
[13] Adams, S.; Cockburn, B., A mixed finite element method for elasticity in three dimensions, J. Sci. Comput., 25, 515-521 (2005) · Zbl 1125.74382
[14] Arnold, D. N.; Awanou, G., Rectangular mixed finite elements for elasticity, Math. Models Methods Appl. Sci., 15, 1417-1429 (2005) · Zbl 1077.74044
[15] Arnold, D. N.; Falk, R.; Winther, R., Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp., 76, 1699-1723 (2007) · Zbl 1118.74046
[16] Cockburn, B.; Gopalakrishnan, J.; Guzmán, J., A new elasticity element made for enforcing weak stress symmetry, Math. Comp., 79, 1331-1349 (2010) · Zbl 1369.74078
[17] Gopalakrishnan, J.; Guzmán, J., A second elasticity element using the matrix bubble, IMA J. Numer. Anal., 32, 352-372 (2012) · Zbl 1232.74101
[18] Guzmán, J., A unified analysis of several mixed methods for elasticity with weak stress symmetry, J. Sci. Comput., 44, 156-169 (2010) · Zbl 1203.74017
[19] Arnold, D. N.; Winther, R., Nonconforming mixed elements for elasticity, Math. Models Methods Appl. Sci., 13, 295-307 (2003) · Zbl 1057.74036
[20] Gopalakrishnan, J.; Guzmán, J., Symmetric nonconforming mixed finite elements for linear elasticity, SIAM J. Numer. Anal., 49, 1504-1520 (2011) · Zbl 1237.74174
[21] Hu, J.; Shi, Z. C., Lower order rectangular nonconforming mixed elements for plane elasticity, SIAM J. Numer. Anal., 46, 88-102 (2007) · Zbl 1166.65395
[22] Man, H.-Y.; Hu, J.; Shi, Z.-C., Lower order rectangular nonconforming mixed finite element for the three-dimensional elasticity problem, Math. Models Methods Appl. Sci., 19, 51-65 (2009) · Zbl 1156.74045
[23] Yi, S. Y., Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions, Calcolo, 42, 115-133 (2005) · Zbl 1168.74463
[24] Yi, S. Y., A New nonconforming mixed finite element method for linear elasticity, Math. Models Methods Appl. Sci., 16, 979-999 (2006) · Zbl 1094.74057
[25] Chen, S.-C.; Wang, Y.-N., Conforming rectangular mixed finite elements for elasticity, J. Sci. Comput., 47, 93-108 (2011) · Zbl 1248.74038
[26] Awanou, G., Two remarks on rectangular mixed finite elements for elasticity, J. Sci. Comput., 50, 91-102 (2012) · Zbl 1314.74058
[27] Carstensen, C.; Eigel, M.; Gedicke, J., Computational competition of symmetric mixed FEM in linear elasticity, Comput. Methods Appl. Mech. Engrg., 200, 2903-2915 (2011) · Zbl 1230.74172
[28] Carstensen, C.; Günther, D.; Reininghaus, J.; Thiele, J., The Arnold-Winther mixed FEM in linear elasticity. Part I: Implementation and numerical verification, Comput. Methods Appl. Mech. Engrg., 197, 3014-3023 (2008) · Zbl 1194.74374
[29] Bramwell, J.; Demkowicz, L.; Gopalakrishnan, J.; Qiu, W. F., A locking free hp DPG method for linear elasticity with symmetric stresses, Numer. Math., 122, 671-707 (2012) · Zbl 1283.74094
[30] Hu, J., A new family of efficient conforming mixed finite elements on both rectangular and cuboid meshes for linear elasticity in the symmetric formulation, SIAM J. Numer. Anal., 53, 1438-1463 (2015), see also arXiv:1311.4718v2 [math.NA], 17 Dec 2013 · Zbl 1328.65242
[31] Hu, J., Finite element approximations of symmetric tensors on simplicial grids in \(R^n\): the higher order case, J. Comput. Math., 33, 283-296 (2015) · Zbl 1340.74095
[33] Hu, J.; Zhang, S., A family of conforming mixed finite elements for linear elasticity on tetrahedral grids, Sci. China Math., 58, 297-307 (2015), see also arXiv:1407.4190 [math.NA], 2014 · Zbl 1308.74148
[35] Chen, C. M., Structure Theory of Superconvergence of Finite Elements (in Chinese) (2002), Hunan Science & Technology Press: Hunan Science & Technology Press Changsha
[36] Chen, C. M.; Huang, Y. Q., High Aaccuracy Theory of Finite Element Methods (in Chinese) (1995), Hunan Science & Technology Press: Hunan Science & Technology Press Changsha
[37] Duran, R., Superconvergence for rectangular mixed finite elements, Numer. Math., 58, 2-15 (1990)
[38] Lin, Q.; Lin, J. F., Finite Element Methods: Accuracy and Improvement (2006), Science Press: Science Press Beijing
[39] Lin, Q.; Yan, N. N., The Construction and Analysis of High Efficiency Finite Element Methods (1996), Hebei University Press: Hebei University Press Baoding, (in Chinese)
[40] Shi, D. Y.; Li, M. H., Superconvergence analysis of a stable conforming rectangular mixed finite elements for the linear elasticity problem, J. Comput. Math., 32, 205-2014 (2014) · Zbl 1313.74031
[41] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer · Zbl 0788.73002
[42] Hu, J.; Man, H. Y.; Zhang, S., A simple conforming mixed finite element for linear elasticity on rectangular grids in any space dimension, J. Sci. Comput., 58, 367-379 (2014) · Zbl 1296.65159
[43] Brandts, J. H., Superconvergence and a posteriori error estimation for triangular mixed finite elements, Numer. Math., 68, 311-324 (1994) · Zbl 0823.65103
[44] Douglas, J.; Wang, J., Superconvergence of mixed finite element methods on rectangular domains, Calcolo, 26, 121-134 (1989) · Zbl 0714.65084
[45] Ewing, R. E.; Lazarov, R. D.; Wang, J., Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28, 1015-1029 (1991) · Zbl 0733.65065
[46] Wang, K., Superconvergence and extrapolation for mixed finite element methods on rectangular domains, Math. Comp., 56, 477-503 (1991) · Zbl 0729.65084
[47] Hu, J.; Shi, Z. C., A lower bound of the norm error estimate for the Adini element of the biharmonic equation, SIAM J. Numer. Math., 51, 2651-2659 (2013) · Zbl 1402.65160
[48] Park, C.; Sheen, D., P1-nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal., 41, 624-640 (2003) · Zbl 1048.65114
[49] Hu, J.; Shi, Z. C., Constrained quadrilateral nonconforming rotated \(Q_1\)-element, J. Comput. Math., 23, 561-586 (2005) · Zbl 1086.65111
[50] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary value Problems and Applications. Vol. 1. (1972), Springer-Verlag: Springer-Verlag New York · Zbl 0227.35001
[51] Boffi, D.; Brezzi, F.; Fortin, M., (Mixed Finite Element Methods and Applications. Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44 (2013)) · Zbl 1277.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.