×

Tumor stabilization induced by t-cell recruitment fluctuations. (English) Zbl 1448.92058

Summary: The influence of random fluctuations on the recruitment of effector cells towards a tumor is studied by means of a stochastic mathematical model. Aggressively growing tumors are confronted against varying intensities of the cell-mediated immune response for which chaotic and periodic oscillations coexist together with stable tumor dynamics. A thorough parametric analysis of the noise-induced transition from this oscillatory regime to complete tumor dominance is carried out. A hysteresis phenomenon is uncovered, which stabilizes the tumor at its carrying capacity and drives the healthy and the immune cell populations to their extinction. Furthermore, it is shown that near a crisis bifurcation, such transitions occur under weak noise intensities. Finally, the corresponding noise-induced chaos-order transformation is analyzed and discussed in detail.

MSC:

92C32 Pathology, pathophysiology
34C28 Complex behavior and chaotic systems of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

References:

[1] Aguirre-Ghiso, J. A. [2007] “ Models, mechanisms and clinical evidence for cancer dormancy,” Nat. Rev. Cancer7, 834-846.
[2] Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E. & Schimansky-Geier, L. [2007] Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (Springer, Berlin). · Zbl 1125.37001
[3] Bashkirtseva, I., Nasyrova, V. & Ryashko, L. [2018] “ Analysis of noise effects in a map-based neuron model with Canard-type quasiperiodic oscillations,” Commun. Nonlin. Sci. Numer. Simulat.63, 261-270. · Zbl 1509.39017
[4] Bellomo, N. & Preziosi, L. [2000] “ Modelling and mathematical problems related to tumor evolution and its interaction with the immune system,” Math. Comput. Model.32, 413-452. · Zbl 0997.92020
[5] Bellomo, N., Li, N. K. & Maini, P. K. [2008] “ On the foundations of cancer modelling: Selected topics, speculations, and perspectives,” Math. Models Methods Appl. Sci.18, 593-646. · Zbl 1151.92014
[6] Caravagna, G., d’Onofrio, A., Milazzo, P. & Barbuti, R. [2010] “ Tumour suppression by immune system through stochastic oscillations,” J. Theoret. Biol.265, 336-345. · Zbl 1460.92047
[7] De Pillis, L. G. & Radunskaya, A. [2003] “ The dynamics of an optimally controlled tumor model: A case study,” Math. Comput. Model.37, 1221-1244. · Zbl 1043.92018
[8] De Pillis, L. G., Radunskaya, A. E. & Wiseman, C. L. [2005] “ A validated mathematical model of cell-mediated immune response to tumor growth,” Cancer Res.65, 235-252.
[9] De Pillis, L. G., Gu, W. & Radunskaya, A. E. [2006] “ Mixed immunotherapy and chemotherapy of tumors: Modelling, applications and biological interpretations,” J. Theor. Biol.238, 841-862. · Zbl 1445.92135
[10] Dunn, G. P., Old, L. J. & Schreiber, R. D. [2004] “ The three Es of cancer immunoediting,” Annu. Rev. Immunol.22, 329-360.
[11] Fiasconaro, A., Spagnolo, B., Ochab-Marcinek, A. & Gudowska-Nowak, E. [2006] “ Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response,” Phys. Rev. E74, 041904.
[12] Gao, J. B., Hwang, S. K. & Liu, J. M. [1999] “ When can noise induce chaos?” Phys. Rev. Lett.82, 1132-1135.
[13] Hanahan, D. & Weinberg, R. A. [2011] “ Hallmarks of cancer: The next generation,” Cell144, 646-673.
[14] Horsthemke, W. & Lefever, R. [1984] Noise-Induced Transitions (Springer, Berlin). · Zbl 0529.60085
[15] Itik, M. & Banks, S. [2010] “ Chaos in a three-dimensional cancer model,” Int. J. Bifurcation and Chaos20, 71-79. · Zbl 1183.34064
[16] Janeway, C. A., Travers, P., Walport, M. & Shlomchik, M. J. [2012] Immunobiology (Garland Science, NY).
[17] Kuznetsov, V. A., Makalkin, I. A., Taylor, M. A. & Perelson, A. S. [1994] “ Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,” Bull. Math. Biol.56, 295-321. · Zbl 0789.92019
[18] Lasinska, I., Kolenda, T., Teresiak, A., Lamperska, K. M., Galus, L. & Mackiewicz, J. [2019] “ Immunotherapy in patients with recurrent and metastatic squamous cell carcinoma of the head and neck,” Anticancer Agents Med. Chem.19, 290-303.
[19] Li, D. X. & Zhao, Y. [2019] “ Survival analysis for tumor cells in stochastic switching environment,” Appl. Math. Comp.357, 199-205. · Zbl 1428.92041
[20] Lindner, B., Garcia-Ojalvo, J., Neiman, A. & Schimansky-Geier, L. [2004] “ Effects of noise in excitable systems,” Phys. Rep.392, 321-424.
[21] Liu, X., Li, Q. & Pan, J. [2018] “ A deterministic and stochastic model for the system dynamics of Tumor-Immune responses to chemotherapy,” Physica A500, 162-176. · Zbl 1514.92044
[22] López, Á. G., Sabuco, J., Seoane, J. M., Duarte, J., Januário, C. & Sanjuán, M. A. F. [2014a] “ Avoiding healthy cells extinction in a cancer model,” J. Theor. Biol.349, 74-81. · Zbl 1412.92153
[23] López, A. G., Seoane, J. M. & Sanjuán, M. A. F. [2014b] “ A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy,” Bull. Math. Biol.76, 2884-2906. · Zbl 1329.92075
[24] López, A. G., Seoane, J. M. & Sanjuán, M. A. F. [2017a] “ Bifurcation analysis and nonlinear decay of a tumor in the presence of an immune response,” Int. J. Bifurcation and Chaos27, 1750223. · Zbl 1383.34073
[25] López, A. G., Seoane, J. M. & Sanjuán, M. A. F. [2017b] “ Dynamics of the cell-mediated immune response to tumour growth,” Phil. Trans. R. Soc. A375, 20160291. · Zbl 1404.92079
[26] McDonnell, M. D., Stocks, N. G., Pearce, C. E. M. & Abbott, D. [2008] Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge University Press, Cambridge). · Zbl 1157.94003
[27] Miller, M. J., Wei, S. H., Cahalan, M. D. & Parker, I. [2003] “ Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy,” Proc. Natl. Acad. Sci. USA100, 2604-2609.
[28] Nani, F. & Freedman, H. I. [2000] “ A mathematical model of cancer treatment by immunotherapy,” Math. Biosci.163, 159-199. · Zbl 0997.92024
[29] Ribas, A., Camacho, L. H., Lopez-Berestein, G., Pavlov, D., Bulanhagui, C. A., Millham, R.et al. [2005] “ Antitumor activity in melanoma and anti-self responses in a phase trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206,” J. Clin. Oncol.23, 8968-8977.
[30] Ryashko, L. B. & Slepukhina, E. S. [2017] “ Noise-induced torus bursting in the stochastic Hindmarsh-Rose neuron model,” Phys. Rev. E96, 032212.
[31] Sardanyés, J. & Alarcón, T. [2018] “ Noise-induced bistability in the fate of cancer phenotypic quasispecies: A bit-strings approach,” Sci. Rep.8, 1027.
[32] Teng, M. W. L., Swann, J. B., Kohebel, C. M., Schreiber, R. D. & Smyth, M. J. [2008] “ Immune-mediated dormancy: An equilibrium with cancer,” J. Leukoc. Biol.18, 645-653.
[33] Tsimring, L. S. [2014] “ Noise in biology,” Rep. Progr. Phys.77, 026601.
[34] Van Kampen, N. G. [1992] Stochastic Processes in Physics and Chemistry (Elsevier, The Netherlands). · Zbl 0974.60020
[35] Weinberg, R. A. [2013] The Biology of Cancer (Garland Science, NY).
[36] Wodarz, D., & Komarova, N. L. [2014] Dynamics of Cancer: Mathematical Foundations of Oncology (World Scientific Publishing, Singapore). · Zbl 1318.92001
[37] Yang, J., Tan, Y. S. & Cheke, R. A. [2019] “ Thresholds for extinction and proliferation in a stochastic Tumour-Immune model with pulsed comprehensive therapy,” Commun. Nonlin. Sci. Numer. Simulat.73, 363-378. · Zbl 1464.92135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.