×

On the correlation dimension of discrete fractional chaotic systems. (English) Zbl 1452.37080

Summary: This paper is mainly devoted to the investigation of discrete-time fractional systems in three aspects. Firstly, the fractional Bogdanov map with memory effect in Riemann-Liouville sense is obtained. Then, via constructing suitable controllers, the fractional Bogdanov map is shown to undergo a transition from regular state to chaotic one. Meanwhile, the positive largest Lyapunov exponent is calculated by the Jacobian matrix algorithm to distinguish the chaotic areas. Finally, the Grassberger-Procaccia algorithm is employed to evaluate the correlation dimension of the controlled fractional Bogdanov system under different parameters. The main results show that the correlation dimension converges to a fixed value as the embedding dimension increases for the controlled fractional Bogdanov map in chaotic state, which also coincides with the conclusion driven by the largest Lyapunov exponent. Moreover, three-dimensional fractional Stefanski map is considered to further verify the effectiveness and generality of the obtained results.

MSC:

37M05 Simulation of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37C45 Dimension theory of smooth dynamical systems
39A13 Difference equations, scaling (\(q\)-differences)
39A70 Difference operators
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Abdeljawad, T. [2011] “ On Riemann and Caputo fractional differences,” Comput. Math. Appl.62, 1602-1611. · Zbl 1228.26008
[2] Albano, A. M., Muench, J., Schwartz, C., Mees, A. I. & Rapp, P. E. [1988] “ Singular-value decomposition and the Grassberger-Procaccia algorithm,” Phys. Rev. A38, 3017-3026.
[3] Atici, F. M. & Eloe, P. W. [2009] “ Initial value problems in discrete fractional calculus,” Proc. Amer. Math. Soc.137, 981-989. · Zbl 1166.39005
[4] Balachandran, K., Park, J. Y. & Trujillo, J. J. [2012] “ Controllability of nonlinear fractional dynamical systems,” Nonlin. Anal. — Th. Meth. Appl.75, 1919-1926. · Zbl 1277.34006
[5] Baleanu, D., Machado, J. A. T. & Luo, A. C. J. [2012] Fractional Dynamics and Control (Springer-Verlag, NY, USA).
[6] Bao, H. B., Park, J. H. & Cao, J. D. [2015] “ Adaptive synchronization of fractional-order memristor-based neural networks with time delay,” Nonlin. Dyn.82, 1343-1354. · Zbl 1348.93159
[7] Bogdanov, R. I. [1981] “ Bifurcation of the limit cycle of a family of plane vector fields,” Select. Math. Soviet.1, 373-387. · Zbl 0518.58029
[8] Caponetto, R. & Fazzino, S. [2013] “ A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems,” Commun. Nonlin. Sci. Numer. Simul.18, 22-27. · Zbl 1253.35199
[9] Chen, D. Y., Liu, Y. X., Ma, X. Y. & Zhang, R. F. [2012] “ Control of a class of fractional-order chaotic systems via sliding mode,” Nonlin. Dyn.67, 893-901. · Zbl 1242.93027
[10] Ding, M. Z., Grebogi, C., Ott, E., Sauer, T. & Yorke, J. A. [1993] “ Estimating correlation dimension from a chaotic time series: When does plateau onset occur?” Physica D69, 404-424. · Zbl 0803.58038
[11] Feki, M. [2003] “ An adaptive chaos synchronization scheme applied to secure communication,” Chaos Solit. Fract.18, 141-148. · Zbl 1048.93508
[12] Fraser, A. M. & Swinney, H. L. [1986] “ Independent coordinates for strange attractors from mutual information,” Phys. Rev. A33, 1134-1140. · Zbl 1184.37027
[13] Ge, Z. M. & Zhang, A. R. [2007] “ Anticontrol of chaos of the fractional order modified van der Pol systems,” Appl. Math. Comput.187, 1161-1172. · Zbl 1114.65363
[14] Grassberger, P. & Procaccia, I. [1983a] “ Characterization of strange attractors,” Phys. Rev. Lett.50, 346-349. · Zbl 0593.58024
[15] Grassberger, P. & Procaccia, I. [1983b] “ Measuring the strangeness of strange attractors,” Physica D9D, 189-208. · Zbl 0593.58024
[16] Grigorenko, I. & Grigorenko, E. [2003] “ Chaotic dynamics of the fractional Lorenz system,” Phys. Rev. Lett.91, 034101. · Zbl 1234.49040
[17] Huang, C. D., Cao, J. D., Xiao, M., Alsaedi, A. & Alsaadi, F. E. [2017] “ Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders,” Appl. Math. Comput.293, 293-310. · Zbl 1411.37068
[18] Kilbas, A. A., Srivastava, H. M. & Trujillo, J. J. [2006] Theory and Applications of Fractional Differential Equations (Elsevier Science, Amsterdam, NL). · Zbl 1092.45003
[19] Kim, H. S., Eykholt, R. & Salas, J. D. [1999] “ Nonlinear dynamics, delay times, and embedding windows,” Physica D127, 48-60. · Zbl 0941.37054
[20] Li, C. P., Ma, L. & Xiao, H. [2013] “ Anti-control of chaos in fractional difference equations,” Proc. ASME IDETC/CIE Conf.4, V004T08A027.
[21] Li, C. P. & Ma, L. [2016] “ Lyapunov-Schmidt reduction for fractional differential systems,” J. Comput. Nonlin. Dyn.11, 051022.
[22] Liu, L. F. & Caraballo, T. [2017] “ Well-posedness and dynamics of a fractional stochastic integro-differential equation,” Physica D355, 48-60. · Zbl 1378.37091
[23] Ma, L. [2019a] “ Comparison theorems for Caputo-Hadamard fractional differential equations,” Fractals27, 1950036. · Zbl 1433.34012
[24] Ma, L. [2019b] “ Blow-up phenomena profile for Hadamard fractional differential systems in finite time,” Fractals27, 1950093. · Zbl 1435.34015
[25] Ma, L. & Li, C. P. [2016] “ Center manifold of fractional dynamical system,” J. Comput. Nonlin. Dyn.11, 021010.
[26] Ma, L. & Li, C. P. [2017] “ On Hadamard fractional calculus,” Fractals25, 1750033. · Zbl 1371.26009
[27] Ma, L. & Li, C. P. [2018] “ On finite part integrals and Hadamard-type fractional derivatives,” J. Comput. Nonlin. Dyn.13, 090905.
[28] Oldham, K. B. & Spanier, J. [1974] The Fractional Calculus (Academic Press, NY, USA). · Zbl 0292.26011
[29] Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. [1980] “ Geometry from a time series,” Phys. Rev. Lett.45, 712-716.
[30] Rosenstein, M. T., Collins, J. J. & De Luca, C. J. [1994] “ Reconstruction expansion as a geometry-based framework for choosing proper delay times,” Physica D73, 82-98.
[31] Rossler, O. E. [1979] “ An equation for hyperchaos,” Phys. Lett. A71, 155-157. · Zbl 0996.37502
[32] Srivastava, M., Agrawal, S. K., Vishal, K. & Das, S. [2014] “ Chaos control of fractional order Rabinovich-Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich-Fabrikant system,” Appl. Math. Model.38, 3361-3372. · Zbl 1449.37072
[33] Stefanski, K. [1998] “ Modelling chaos and hyperchaos with 3D maps,” Chaos Solit. Fractals9, 83-93. · Zbl 0934.37033
[34] Takens, F. [1981] “ Detecting strange attractors in turbulence,” Lect. Notes Math.898, 361-381. · Zbl 0513.58032
[35] Tavazoei, M. S. & Haeri, M. [2008] “ Chaotic attractors in incommensurate fractional order systems,” Physica D237, 2628-2637. · Zbl 1157.26310
[36] Wang, Z., Wang, X. H., Li, Y. X. & Huang, X. [2017] “ Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay,” Int. J. Bifurcation and Chaos27, 1750209-1-13. · Zbl 1378.92012
[37] Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. [1985] “ Determining Lyapounov exponents from a time series,” Physica D16, 285-317. · Zbl 0585.58037
[38] Wu, G. C. & Baleanu, D. [2014] “ Discrete fractional logistic map and its chaos,” Nonlin. Dyn.75, 283-287. · Zbl 1281.34121
[39] Wu, G. C. & Baleanu, D. [2015] “ Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps,” Commun. Nonlin. Sci. Numer. Simul.22, 95-100. · Zbl 1329.65309
[40] Wu, G. C., Baleanu, D., Xie, H. P. & Chen, F. L. [2016] “ Chaos synchronization of fractional chaotic maps based on the stability condition,” Physica A460, 374-383. · Zbl 1400.34107
[41] Xiao, H., Ma, Y. T. & Li, C. P. [2014] “ Chaotic vibration in fractional maps,” J. Vibr. Contr.20, 964-972. · Zbl 1348.37029
[42] Zhang, W. W., Zhou, S. B., Liao, X. F., Mai, H. H. & Xiao, K. [2008] “ Estimate the largest Lyapunov exponent of fractional-order systems,” IEEE 2008 Int. Conf. Communications, Circuits and Systems, pp. 1121-1124.
[43] Zhang, F. R., Chen, G. R., Li, C. P. & Kurths, J. [2013] “ Chaos synchronization in fractional differential systems,” Philos. Trans. R. Soc. A — Math. Phys. Eng. Sci.371, 20120155. · Zbl 1342.34070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.