×

Revisiting memristor properties. (English) Zbl 1484.92007

Summary: Memristor is a natural synapse because of its nanoscale and memory property, which influences the performance of memristive artificial neural networks. A three-variable memristor model is simplified with 15 kinds of properties, including the learning experience, the forgetting curve, the spiking time-dependent plasticity (STDP), the spiking rate dependent plasticity (SRDP), and the integration property. Through the analysis of the model, one more unobserved property called pseudo-polarity reversibility property is predicted by assuming the long-term memory is independent of memductance.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
94C60 Circuits in qualitative investigation and simulation of models
Full Text: DOI

References:

[1] Adhikari, S. P., Sah, M. P., Kim, H. & Chua, L. O. [2013] “ Three fingerprints of memristor,” IEEE Trans. Circuits Syst.-I60, 3008-3021.
[2] Ascoli, A., Tetzlaff, R., Chua, L. O., Strachan, J. P. & Williams, R. S. [2016] “ Memory loss in a tantalum oxide memristor,” Adv. Sci. Technol.99, 94-101.
[3] Banerjee, W., Liu, Q., Lv, H., Long, S. & Liu, M. [2017] “ Electronic imitation of behavioral and psychological synaptic activities using TiO_x/Al_2O_3-based memristor devices,” Nanoscale9, 14442-14450.
[4] Bao, B., Yu, J., Hu, F. & Liu, Z. [2014] “ Generalized memristor consisting of diode bridge with first order parallel RC filter,” Int. J. Bifurcation and Chaos24, 1450143-1-4. · Zbl 1304.34085
[5] Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M. & Wu, H. [2018] “ Three-dimensional memristive Hindmarsh-Rose neuron model with hidden coexisting asymmetric behaviors,” Complexity2018, 3872573.
[6] Bao, H., Chen, M., Wu, H. & Bao, B. [2020a] “ Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system,” Sci. China Tech. Sci.63, 603-613.
[7] Bao, H., Hu, A., Liu, W. & Bao, B. [2020b] “ Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction,” IEEE Trans. Neural Netw. Learn. Syst.1, 1-10.
[8] Bayat, F. M., Hoskins, B. & Strukov, D. B. [2015] “ Phenomenological modeling of memristive devices,” Appl. Phys. A118, 779-786.
[9] Biolek, Z., Biolek, D. & Biolkova, V. [2009] “ SPICE model of memristor with non-linear Dopant drift,” Radioengineering18, 210-214. · Zbl 1407.93142
[10] Chang, T., Jo, S. H. & Lu, W. [2011a] “ Short-term memory to long-term memory transition in a nanoscale memristor,” ACS Nano5, 7669-7676.
[11] Chang, T., Jo, S. H., Kim, K. H., Sheridan, P., Gaba, S. & Lu, W. [2011b] “ Synaptic behaviors and modeling of a metal oxide memristive device,” Appl. Phys. A102, 857-863.
[12] Chen, Y. & Wang, X. [2009] “ Compact modeling and corner analysis of spintronic memristor,” IEEE/ACM IEEE Int. Symp. Nanoscale Architectures (NANOARCH) (IEEE) (Washington, USA), pp. 7-12.
[13] Chen, L., Li, C., Huang, T., Chen, Y., Wen, S. & Qi, J. [2013] “ A synapse memristor model with forgetting effect,” Phys. Lett. A377, 3260-3265.
[14] Chen, G., Kudryashova, E. V., Kuznetsov, N. V. & Leonov, G. A. [2016] “ Dynamics of the Zeraoulia-Sprott map revisited,” Int. J. Bifurcation and Chaos26, 1650126-1-7. · Zbl 1343.37018
[15] Chen, M., Sun, M., Bao, H., Hu, Y. & Bao, B. [2020] “ Flux-charge analysis of two-memristor-based Chua circuit: Dimensionality decreasing model for detecting extreme multistability,” IEEE Trans. Industr. Electron.67, 2197-2202.
[16] Chua, L. O. [1971] “ Memristor — The missing circuit element,” IEEE Trans. Circuit Th.18, 507-519.
[17] Dongale, T. D., Desai, N. D., Khot, K. V., Mullani, N. B., Pawar, P. S., Tikke, R. S.et al. [2016] “ Effect of surfactants on the data directionality and learning behaviour of Al/TiO2/FTO thin film memristor-based electronic synapse,” J. Solid State Electr.9, 2753-2757.
[18] Fang, X., Tang, Y., Wu, J., Zhu, X., Zhou, J. & Huang, D. [2013] “ Spice modeling of flux-controlled unipolar memristive devices,” Chinese Phys. B22, 078901-1-6.
[19] Fouda, M. E., Elwakil, A. S. & Radwan, A. G. [2015] “ Pinched hysteresis with inverse-memristor frequency characteristics in some nonlinear circuit elements,” Microelectr. J.46, 834-838.
[20] Gale, E. [2014] “ The memory-conservation theory of memristance,” 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation (IEEE).
[21] Guo, M., Xue, Y., Gao, Z., Zhang, Y., Dou, G. & Li, Y. [2017] “ Dynamic analysis of a physical sbt memristor-based chaotic circuit,” Int. J. Bifurcation and Chaos27, 1730047-1-10. · Zbl 1420.94119
[22] Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J.et al. [2010] “ Learning abilities achieved by a single solid-state atomic switch,” Adv. Mater.22, 1831-1834.
[23] Hou, P., Hou, P., Wang, J., Wang, J., Zhong, X., Zhong, X.et al. [2016] “ A ferroelectric memristor based on the migration of oxygen vacancies,” RSC Adv.6, 54113-54118.
[24] Hu, S. G., Wu, S., Jia, W. W., Yu, Q., Deng, L. J. & Fu, Y. Q.et al. [2014] “ Review of nanostructured resistive switching memristor and its applications,” Nanosci. Nanotech. Lett.6, 729-757.
[25] Hu, X., Feng, G., Liu, L. & Duan, S. [2015] “ Composite characteristics of memristor series and parallel circuits,” Int. J. Bifurcation and Chaos25, 1530019-1-15. · Zbl 1321.34063
[26] Huang, T., Chen, G. & Kurths, J. [2017] “ Synchronization of chaotic systems with time-varying coupling delays,” Discr. Contin. Dyn. Syst. — Ser. B16, 1071-1082. · Zbl 1233.34018
[27] Itoh, M. [2019] “Some interesting features of memristor CNN,” 1-60.
[28] Itoh, M. & Chua, L. O. [2008] “ Memristor oscillators,” Int. J. Bifurcation and Chaos18, 3138-3206. · Zbl 1165.94300
[29] Kim, K. H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N.et al. [2012] “ A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications,” Nano Lett.12, 389-395.
[30] Kim, S., Du, C., Sheridan, P., Ma, W., Choi, S. H. & Lu, W. D. [2015] “ Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity,” Nano Lett.15, 2203-2211.
[31] Kim, Y. S. & Min, K. S. [2013] “ Behavioral current-voltage model with intermediate states for unipolar resistive memories,” J. Semicond. Tech. Sci.13, 539-545.
[32] Kvatinsky, S., Friedman, E. G., Kolodny, A. & Weiser, U. C. [2013] “Team: Threshold adaptive memristor model,” IEEE Trans. Circuits Syst.-I: Reg. Papers60, 211-221. · Zbl 1468.94674
[33] Lee, S. B., Chang, S. H., Yoo, H. K., Yoon, M. J., Yang, S. M. & Kang, B. S. [2012] “ Reversible changes between bipolar and unipolar resistance-switching phenomena in a Pt/SrTiO_x/Pt cell,” Curr. Appl. Phys.12, 1515-1517.
[34] Liao, X. & Mu, N. [2019] “ Self-sustained oscillation in a memristor circuit,” Nonlin. Dyn.96, 1267-1281. · Zbl 1437.94107
[35] Lupo, N., Bonizzoni, E., Perez, E., Wenger, C. & Maloberti, F. [2018] “ A voltage-time model for memristive devices,” IEEE Trans. VLSI Syst.26, 1452-1460.
[36] Nishitani, Y., Kaneko, Y. & Ueda, M. [2015] “ Supervised learning using spike-timing-dependent plasticity of memristive synapses,” IEEE Trans. Neur. Netw. Learn. Syst.26, 2999-3008.
[37] Pershin, Y. V. & Ventra, M. D. [2010] “ Experimental demonstration of associative memory with memristive neural networks,” Neural Netw.23, 881-886.
[38] Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R.et al. [2009] “ Switching dynamics in titanium dioxide memristive devices,” J. Appl. Phys.106, 074508-1-6.
[39] Prodromakis, T., Peh, B. P., Papavassiliou, C. & Toumazou, C. [2011] “ A versatile memristor model with nonlinear dopant kinetics,” IEEE Trans. Electron. Dev.58, 3099-3105.
[40] Redondo, F. G., Gowers, R. P., Yepes, A. C., Vallejo, M. L. & Jiang, L. [2016] “Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds,” IEEE Trans. Circuits Syst.-I: Reg. Papers63, 1255-1264. · Zbl 1468.94110
[41] Rziga, F. O., Mbarek, K., Ghedira, S. & Besbes, K. [2017] “ The basic I-V characteristics of memristor model: Simulation and analysis,” Appl. Phys. A — Mater.123, 288-1-8.
[42] Sheridan, P. M., Cai, F., Du, C., Ma, W., Zhang, Z. & Lu, W. D. [2017] “ Sparse coding with memristor networks,” Nat. Nanotechnol.12, 784-789.
[43] Singh, J. & Raj, B. [2019] “ An accurate and generic window function for nonlinear memristor models,” J. Comput. Electron.18, 640-647.
[44] Smagulova, K., Krestinskaya, O. & James, A. P. [2018] “ A memristor-based long short term memory circuit,” Analog Integr. Circ. Sign. Process.95, 467-472.
[45] Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. [2008] “ The missing memristor found,” Nature453, 80-83.
[46] Strukov, D. B., Alibart, F. & Williams, R. S. [2012] “ Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal oxide metal memristors,” Appl. Phys. A107, 509-518.
[47] Sun, X., Li, G., Zhang, X., Ding, L. & Zhang, W. [2011] “ Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells,” J. Phys. D44, 125404-1-5.
[48] Wan, Q., Zeng, F., Yin, J., Sun, Y., Hu, Y., Liu, J.et al. [2019] “ Phase-change nanoclusters embedded in a memristor for simulating synaptic learning,” Nanoscale11, 5684-1-9.
[49] Wang, Z. Q., Xu, H. Y., Li, X. H., Yu, H., Liu, Y. C. & Zhu, X. J. [2012] “ Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous ingazno memristor,” Adv. Funct. Mater.22, 2759-2765.
[50] Wang, Z., Joshi, S., Savelev, S., Song, W., Midya, R., Li, Y.et al. [2018] “ Fully memristive neural networks for pattern classification with unsupervised learning,” Nat. Electron.1, 137-145.
[51] Wang, P. S., He, C. L., Tang, J., Yang, R., Shi, D. & Zhang, G. [2019] “ Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor,” Chinese Phys. B28, 17304.
[52] Wen, S., Xie, X., Yan, Z., Huang, T. & Zeng, Z. [2018] “ General memristor with applications in multilayer neural networks,” Neural Netw.103, 142-149.
[53] Wu, H., Wang, C., Fu, H., Zhou, J. & Zheng, S. [2016] “ Unipolar memristive switching in bulk positive temperature coefficient ceramic thermistor,” Mod. Phys. Lett. B30, 1650025-1-9.
[54] Wu, H., Ye, Y., Chen, M., Xu, Q. & Bao, B. [2019] “ Extremely slow passages in low-pass filter-based memristive oscillator,” Nonlin. Dyn.97, 2339-2353.
[55] Xiao, S., Xie, X., Wen, S., Zeng, Z., Huang, T. & Jiang, J. [2018] “ GST-memristor-based online learning neural networks,” Neurocomputing272, 677-682.
[56] Xie, X., Wen, S., Zeng, Z. & Huang, T. [2018] “ Memristor-based circuit implementation of pulse-coupled neural network with dynamical threshold generator,” Neurocomputing284, 10-16.
[57] Yakopcic, C., Taha, T. M., Subramanyam, G., Pino, R. E. & Rogers, S. [2011] “ A memristor device model,” IEEE Electr. Device Lett.32, 1436-1438.
[58] Yan, X., Zhao, J., Liu, S., Zhou, Z., Liu, Q., Chen, J.et al. [2018] “ Memristors: Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing,” Adv. Funct. Mater.28, 1870002.
[59] Yang, J. J., Strukov, D. B. & Stewart, D. R. [2013] “ Memristive devices for computing,” Nat. Nanotechnol.8, 13-24.
[60] Zhang, Y., Zhang, X. & Yu, J. [2009] “ Approximated SPICE model for memristor,” 2009 Int. Conf. Communications, Circuits and Systems (IEEE), pp. 928-931.
[61] Zhang, J. J., Sun, H. J., Li, Y., Wang, Q., Xu, X. H. & Miao, X. S. [2013] “ AgInSbTe memristor with gradual resistance tuning,” Appl. Phys. Lett.102, 183513.
[62] Zhang, L., Ge, N., Yang, J. J., Li, Z., Williams, R. S. & Chen, Y. [2015] “ Low voltage two-state-variable memristor model of vacancy-drift resistive switches,” Appl. Phys. A119, 1-9.
[63] Zhang, Y., Guo, M., Dou, G., Li, Y. & Chen, G. [2019] “ Oscillatory circuits built on physical sbt memristor,” Int. J. Bifurcation and Chaos29, 1950097-1-21.
[64] Zhao, Y., Fang, C., Zhang, X., Xu, X., Gong, T., Luo, Q.et al. [2018] “ A compact model for drift and diffusion memristor applied in neuron circuits design,” IEEE Trans. Electron Dev.99, 1-7.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.