×

On a time-space fractional backward diffusion problem with inexact orders. (English) Zbl 1442.35527

Summary: In this paper, we focus on the backward diffusion problem with the Caputo fractional derivative operator in time and a general spatial nonlocal operator. For \(T>0\) and \(s\in[0,T)\), we consider the problem \((\mathbb{P}_s)\) of recovering the distribution \(u(\mathbf{x},s)\) from a measure of the final data \(u(\mathbf{x},T)\) for the following non-homogeneous time-space fractional diffusion equation \[ D_t^\alpha u(\mathbf{x},t)+K_{\boldsymbol{\beta}}L_\gamma u(\mathbf{x},t)=f(\mathbf{x},t)\text{ in }\mathbb{R}^n\times(0,T) \] subject to the final condition \(u(\mathbf{x},T)=u_T(\mathbf{x})\) in \(\mathbb{R}^n\). The derivative orders and the nonlocal operator are perturbed with noises. Firstly, for \(0<s<T\), we prove the well-posedness of Problem \((\mathbb{P}_s)\) by studying the unique existence and continuity with respect to the derivative orders, the source term as well as the final value of the solution. Secondly, for \(s=0\), we verify the ill-posedness of Problem \((\mathbb{P}_0)\) and use the method of modified iterated Lavrentiev to construct a regularization solution from inexact data and inexact derivative orders. We apply a modified form of the discrepancy principle to choose regularization parameter and establish new optimal convergence estimates between the exact solution and its regularized approximation.

MSC:

35R11 Fractional partial differential equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
Full Text: DOI

References:

[1] Metzler, R.; Klafter, J., Boundary value problems for fractional diffusion equations, Physica A, 278, 1-2, 107-125 (2000)
[2] Zhu, T.; Harris, J. M., Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians, Geophysics, 79, 3, T105-T116 (2014)
[3] Chechkin, A. V.; Goreno, R.; Sokolov, I. M., Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E, 66, 4, 046129 (2002)
[4] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 1, 426-447 (2011) · Zbl 1219.35367
[5] Al-Jamal, Mohammad F., Recovering the initial distribution for a time-fractional diffusion equation, Acta Appl. Math., 149, 1, 87-99 (2017) · Zbl 1422.65236
[6] Tuan, N. H.; Long, L. D.; Tatar, S., Tikhonov regularization method for a backward problem for the inhomogeneous time-fractional diffusion equation, Appl. Anal., 97, 5, 842-863 (2018) · Zbl 1404.65146
[7] Wang, J. G.; Wei, T.; Zhou, Y. B., Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, Appl. Math. Model., 37, 18-19, 8518-8532 (2013) · Zbl 1427.65229
[8] Wang, L.; Liu, J., Total variation regularization for a backward time-fractional diffusion problem, Inverse Problems, 29, 11, 115013 (2013) · Zbl 1297.65116
[9] Wei, T.; Wang, J. G., Determination of Robin coefficient in a fractional diffusion, Appl. Math. Model., 40, 17-18, 7948-7961 (2016) · Zbl 1471.65127
[10] Yang, F.; Fu, C. L., The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation, Appl. Math. Model., 39, 5-6, 1500-1512 (2015) · Zbl 1443.35199
[11] Yang, M.; Liu, J., Fourier regularization for a final value time-fractional diffusion problem, Appl. Anal., 94, 7, 1508-1526 (2015) · Zbl 1317.35290
[12] Zheng, G. H.; Wei, T., Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem, Inverse Problems, 26, 115017 (2010), (22pp) · Zbl 1206.65226
[13] Zheng, G. H.; Zhang, Q. G., Recovering the initial distribution for space-fractional diffusion equation by a logarithmic regularization method, Appl. Math. Lett., 61, 143-148 (2016) · Zbl 1347.65152
[14] Zheng, G. H.; Zhang, Q. G., Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method, Math. Comput. Simulation, 148, 37-47 (2018) · Zbl 1540.35458
[15] Jia, J.; Peng, J.; Yang, J., Harnack’s inequality for a space – time fractional diffusion equation and applications to an inverse source problem, J. Differential Equations, 262, 8, 4415-4450 (2017) · Zbl 1357.35284
[16] Ž. Tomovski, J.; Sandev, T.; Metzler, R.; Dubbeldam, J., Generalized space – time fractional diffusion equation with composite fractional time derivative, Physica A, 391, 2527-2542 (2012)
[17] Tatar, S.; Ulusoy, S., An inverse source problem for a one-dimensional space – time fractional diffusion equation, Appl. Anal., 94, 11, 2233-2244 (2015) · Zbl 1327.35416
[18] Jia, J.; Peng, J.; Gao, J.; Li, Y., Backward problem for a time-space fractional diffusion equation, Inverse Probl. Imaging, 12, 3, 773-799 (2018) · Zbl 1397.65107
[19] Hadamard, J., Lectures on Cauchy’s Problem in Linear Differential Equations (1923), Yale University Press: Yale University Press New Haven, CT · JFM 49.0725.04
[20] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Kluwer Academic: Kluwer Academic Boston, MA · Zbl 0859.65054
[21] Rajan, M. P.; Reddy, G. D., A variant of Tikhonov regularization for parabolic PDE with space derivative multiplied by a small parameter \(\epsilon \), Appl. Math. Comput., 259, 412-426 (2015) · Zbl 1390.35121
[22] Bianchi, D.; Donatelli, M., On generalized iterated Tikhonov regularization with operator-dependent seminorms, Electron. Trans. Numer. Anal., 47, 73-99 (2017) · Zbl 1372.65117
[23] Gerth, D.; Klann, E.; Ramlau, R.; Reichel, L., On fractional Tikhonov regularization, J. Inverse Ill-Posed Probl., 23, 6, 611-625 (2015) · Zbl 1327.65075
[24] Engl, H. W., On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems, J. Approx. Theory, 49, 1, 55-63 (1987) · Zbl 0608.65033
[25] Nair, M. T.; Tautenhahn, U., Lavrentiev regularization for linear ill-posed problems under general source conditions, J. Anal. Appl., 23, 1, 167-185 (2004) · Zbl 1063.65041
[26] Morozov, V. A., On the solution of functional equations by the method of regularization, Sov. Math. Dokl., 7, 414-417 (1966) · Zbl 0187.12203
[27] Deng, Y.; Liu, Z., Iteration methods on sideways parabolic equations, Inverse Problems, 25, 095004 (2009), (14pp) · Zbl 1173.35724
[28] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[29] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[30] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Fractional Integrals and Derivatives (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Philadelphia · Zbl 0818.26003
[31] Mittag-Leffler, G. M., Sur la nouvelle function \(E_a\), C. R. Math. Acad. Sci. Paris, 137, 554-558 (1903) · JFM 34.0435.01
[32] Agarwal, R. P., A propos d’une note de M. Pierre Humbert, C. R. Math. Acad. Sci. Paris, 236, 21, 2031-2032 (1953) · Zbl 0051.30801
[33] Humbert, P., Quelques résultats relatifs à la fonction de Mittag-Leffler, C. R. Math. Acad. Sci. Paris, 236, 1467-1468 (1953) · Zbl 0050.10404
[34] Pollard, H., The completely monotonic character of the Mittag-Leffler function \(E_a(- x)\), Bull. Amer. Math. Soc., 54, 1115-1116 (1948) · Zbl 0033.35902
[35] Trong, D. D.; Nane, E.; Minh, N. D.; Tuan, N. H., Continuity of solutions of a class of fractional equations, Potential Anal., 49, 3, 423-478 (2018) · Zbl 1407.35205
[36] Wang, J. G.; Wei, T.; Zhou, Y. B., Optimal error bound and simplified Tikhonov regularization method for a backward problem for the time-fractional diffusion equation, J. Comput. Appl. Math., 279, 277-292 (2015) · Zbl 1306.65260
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.