×

Multi space reduced basis preconditioners for parametrized Stokes equations. (English) Zbl 1442.65357

Summary: We introduce a two-level preconditioner for the efficient solution of large scale saddle-point linear systems arising from the finite element (FE) discretization of parametrized Stokes equations. This preconditioner extends the Multi Space Reduced Basis (MSRB) preconditioning method proposed in [N. Dal Santo, “An algebraic least squares reduced basis method for the solution of parametrized Stokes equations”, Tech. Rep. 21. MATHICSE-EPFL (2017)]; it combines an approximated block (fine grid) preconditioner with a reduced basis (RB) solver which plays the role of coarse component. A sequence of RB spaces, constructed either with an enriched velocity formulation or a Petrov-Galerkin projection, is built. Each RB coarse component is defined to perform a single iteration of the iterative method at hand. The flexible GMRES (FGMRES) algorithm is employed to solve the resulting preconditioned system and targets small tolerances with a very small iteration count and in a very short time. Numerical test cases for Stokes flows in three dimensional parameter-dependent geometries are considered to assess the numerical properties of the proposed technique in different large scale computational settings.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
76M10 Finite element methods applied to problems in fluid mechanics

Software:

LifeV; FEATFLOW; ML; redbKIT
Full Text: DOI

References:

[1] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, ESAIM Math. Model. Numer. Anal., 8, R2, 129-151 (1974) · Zbl 0338.90047
[2] Brezzi, F.; Bathe, K.-J., A discourse on the stability conditions for mixed finite element formulations, Comput. Methods Appl. Mech. Engrg., 82, 1-3, 27-57 (1990) · Zbl 0736.73062
[3] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (2012), Springer Science & Business Media
[4] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics (2005), Oxford University Press · Zbl 1083.76001
[5] Quarteroni, A., Numerical Models for Differential Problems, (Modeling, Simulation and Applications (MS&A), vol. 9 (2014), Springer-Verlag Italia, Milano) · Zbl 1285.65054
[6] Toselli, A.; Widlund, O. B., Domain decomposition methods: algorithms and theory, (Springer Series in Computational Mathematics (2005), Springer: Springer Berlin) · Zbl 1069.65138
[7] Gmeiner, B.; Rüde, U.; Stengel, H.; Waluga, C.; Wohlmuth, B., Performance and scalability of hierarchical hybrid multigrid solvers for Stokes systems, SIAM J. Sci. Comput., 37, 2, C143-C168 (2015) · Zbl 1320.65188
[8] Gmeiner, B.; Huber, M.; John, L.; Rüde, U.; Wohlmuth, B., A quantitative performance study for Stokes solvers at the extreme scale, J. Comput. Sci., 17, 509-521 (2016)
[9] Schmidt, J.; Berzins, M.; Thornock, J.; Saad, T.; Sutherland, J., Large scale parallel solution of incompressible flow problems using uintah and hypre, (Cluster, Cloud and Grid Computing, CCGrid, 2013 13th IEEE/ACM International Symposium on (2013), IEEE), 458-465
[10] Turek, S., Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approache, vol. 6 (1999), Springer Science & Business Media · Zbl 0930.76002
[11] Wesseling, P.; Oosterlee, C. W., Geometric multigrid with applications to computational fluid dynamics, J. Comput. Appl. Math., 128, 1, 311-334 (2001) · Zbl 0989.76069
[12] Wittum, G., Multi-grid methods for Stokes and Navier-Stokes equations, Numer. Math., 54, 5, 543-563 (1989) · Zbl 0645.76031
[13] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., Block preconditioners based on approximate commutators, SIAM J. Sci. Comput., 27, 5, 1651-1668 (2006) · Zbl 1100.65042
[14] May, D. A.; Moresi, L., Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, Phys. Earth Planet. Inter., 171, 1, 33-47 (2008)
[15] Kay, D.; Loghin, D.; Wathen, A., A preconditioner for the steady-state Navier-Stokes equations, SIAM J. Sci. Comput., 24, 1, 237-256 (2002) · Zbl 1013.65039
[16] Silvester, D.; Elman, H. C.; Kay, D.; Wathen, A., Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow, J. Comput. Appl. Math., 128, 1, 261-279 (2001) · Zbl 0983.76051
[17] Rehman, M.; Geenen, T.; Vuik, C.; Segal, G.; MacLachlan, S., On iterative methods for the incompressible Stokes problem, Internat. J. Numer. Methods Fluids, 65, 10, 1180-1200 (2011) · Zbl 1429.76073
[18] Pestana, J.; Wathen, A., Natural preconditioning and iterative methods for saddle point systems, SIAM Rev., 57, 1, 71-91 (2015) · Zbl 1338.65078
[19] Pearson, J. W.; Pestana, J.; Silvester, D. J., Refined saddle-point preconditioners for discretized Stokes problems, Numer. Math., 138, 2, 331-363 (2018) · Zbl 1408.76371
[20] Vuik, K.; Saghir, A.; Boerstoel, G., The Krylov accelerated SIMPLE (R) method for flow problems in industrial furnaces, Internat. J. Numer. Methods Fluids, 33, 7, 1027-1040 (2000) · Zbl 0960.76054
[21] Elman, H.; Howle, V. E.; Shadid, J.; Shuttleworth, R.; Tuminaro, R., A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations, J. Comput. Phys., 227, 3, 1790-1808 (2008) · Zbl 1290.76023
[22] Little, L.; Saad, Y., Block preconditioners for saddle point problems, Numer. Algorithms, 33, 1-4, 367-379 (2003) · Zbl 1030.65036
[23] Forti, D., Parallel Algorithms for the Solution of Large-Scale Fluid-Structure Interaction Problems in Hemodynamics (2016), EPFL, (Ph.D. thesis)
[24] Benzi, M.; Golub, G. H.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034
[25] Benzi, M.; Wathen, A. J., Some preconditioning techniques for saddle point problems, (Model Order Reduction: Theory, Research Aspects and Applications (2008), Springer, Berlin, Heidelberg), 195-211 · Zbl 1152.65425
[26] Wathen, A. J., Preconditioning, Acta Numer., 24, 329-376 (2015) · Zbl 1316.65039
[27] Deparis, S., Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach, SIAM J. Numer. Anal., 46, 4, 2039-2067 (2008) · Zbl 1177.35148
[28] Manzoni, A., An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows, ESAIM Math. Model. Numer. Anal., 48, 4, 1199-1226 (2014) · Zbl 1301.76025
[29] Negri, F.; Rozza, G.; Manzoni, A.; Quarteroni, A., Reduced basis method for parametrized elliptic optimal control problems, SIAM J. Sci. Comput., 35, 5, A2316-A2340 (2013) · Zbl 1280.49046
[30] Negri, F.; Manzoni, A.; Rozza, G., Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Comput. Math. Appl., 69, 319-336 (2015) · Zbl 1421.49026
[31] Quarteroni, A.; Rozza, G., Numerical solution of parametrized Navier-Stokes equations by reduced basis methods, Numer. Methods Partial Differential Equations, 23, 4, 923-948 (2007) · Zbl 1178.76238
[32] Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A., An Algebraic Least Squares Reduced Basis Method for the Solution of Parametrized Stokes Equations, Tech. Rep. 21.2017 (2017), MATHICSE-EPFL
[33] Abdulle, A.; Budáč, O., A Petrov-Galerkin reduced basis approximation of the Stokes equation in parameterized geometries, C. R. Math. Acad. Sci. Paris, 353, 7, 641-645 (2015) · Zbl 1320.76057
[34] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: An Introduction (2016), Springer · Zbl 1337.65113
[35] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified reduced basis methods for parametrized partial differential equations, Springer Briefs Math. (2016) · Zbl 1329.65203
[36] Dal Santo, N.; Deparis, S.; Manzoni, A.; Quarteroni, A., Multi space reduced basis preconditioners for large-scale parametrized PDEs, SIAM J. Sci. Comput., 40, 2, A954-A983 (2018) · Zbl 1453.65416
[37] Dal Santo, N.; Deparis, S.; Manzoni, A., A numerical investigation of multi space reduced basis preconditioners for parametrized elliptic advection-diffusion equations, Commun. Appl. Ind. Math., 8, 1, 282-297 (2017) · Zbl 1382.65384
[38] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[39] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022
[40] Rozza, G.; Huynh, D.; Manzoni, A., Reduced basis approximation and error bounds for Stokes flows in parametrized geometries: roles of the inf-sup stability constants, Numer. Math., 125, 1, 115-152 (2013) · Zbl 1318.76006
[41] Ballarin, F.; Manzoni, A.; Quarteroni, A.; Rozza, G., Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations, Internat. J. Numer. Methods Engrg., 102, 5, 1136-1161 (2015) · Zbl 1352.76039
[42] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci. Paris, 339, 9, 667-672 (2004) · Zbl 1061.65118
[43] Negri, F.; Manzoni, A.; Amsallem, D., Efficient model reduction of parametrized systems by matrix discrete empirical interpolation, J. Comput. Phys., 303, 431-454 (2015) · Zbl 1349.65154
[44] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[45] Manzoni, A.; Negri, F., Efficient reduction of PDEs defined on domains with variable shape, (Benner, P.; Ohlberger, M.; Patera, A.; Rozza, G.; Urban, K., Model Reduction of Parametrized Systems, vol. 17 (2017), Springer, Cham), 183-199 · Zbl 1388.78020
[46] Gee, M. W.; Siefert, C. M.; Hu, J. J.; Tuminaro, R. S.; Sala, M. G., ML 5.0 Smoothed Aggregation User’s Guide, Tech. Rep. SAND2006-2649 (2006), Sandia National Laboratories
[47] L. Bertagna, S. Deparis, L. Formaggia, D. Forti, A. Veneziani, The LifeV library: engineering mathematics beyond the proof of concept, 2017, arXiv:1710.06596; L. Bertagna, S. Deparis, L. Formaggia, D. Forti, A. Veneziani, The LifeV library: engineering mathematics beyond the proof of concept, 2017, arXiv:1710.06596
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.