×

A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems. (English) Zbl 1442.74090

Summary: In this paper, we are concerned with the construction of a new high-order Absorbing Boundary Condition (ABC) for 2D-elastic scattering problems. It is defined by an approximate local Dirichlet-to-Neumann (DtN) map. First, we explain the derivation of this approximation. Next, a detailed analytical study in terms of Hankel functions in the circular case is addressed. The new ABC is compared with the standard low-order Lysmer-Kuhlemeyer ABC. Finally, its accuracy and efficiency are investigated for various numerical examples, particularly at high frequencies.

MSC:

74J20 Wave scattering in solid mechanics
74J25 Inverse problems for waves in solid mechanics
35P25 Scattering theory for PDEs
35Q74 PDEs in connection with mechanics of deformable solids

Software:

GetDP; Gmsh; GetDDM
Full Text: DOI

References:

[1] Virieux, J.; Calandra, H.; Plessix, R. E., A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging, Geophys. Prospect., 59, 5, 794-813 (2011)
[2] Clayton, R.; Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equation, Bull. Seismol. Soc. Am., 67, 1529-1540 (1977)
[3] Engquist, B.; Majda, A., Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math., 32, 3, 314-358 (1979)
[4] Bayliss, A.; Turkel, E., Radiation boundary condition for wave-like equations, vol. 33, 707-725 (1980) · Zbl 0438.35043
[5] Givoli, D.; Keller, J. B., Non-reflecting boundary conditions for elastic waves, Wave Motion, 12, 261-279 (1990) · Zbl 0708.73012
[6] Grote, M. J.; Keller, J. B., Exact nonreflecting boundary condition for elastic waves, SIAM J. Appl. Math., 60, 803-819 (2000) · Zbl 0977.35075
[7] Gächter, G. K.; Grote, M. J., Dirichlet-to-Neumann map for three-dimensional elastic waves, Wave Motion, 37, 293-311 (2003) · Zbl 1163.74351
[8] Lysmer, J.; Kuhlemeyer, R. L., Finite dynamic model for infinite media, J. Eng. Mech. Div., ASCE 95, 859-877 (1969)
[9] Barucq, H.; Bergot, M.; Chabassier, J.; Estecahandy, E., Derivation of high order absorbing boundary conditions for the Helmholtz equation in 2D, ((2014), INRIA Bordeaux; INRIA), Research Report RR-8632
[10] Chaillat, S.; Darbas, M.; Le Louër, F., Approximate local Dirichlet-to-Neumann map for three-dimensional time-harmonic elastic waves, Comput. Methods Appl. Mech. Engrg., 297, 62-83 (2015) · Zbl 1423.74443
[11] Berenger, J. P., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 2, 185-200 (1994) · Zbl 0814.65129
[12] Chew, W. C.; Liu, Q. H., Perfectly matched layers for elastodynamics: A new absorbing boundary condition, J. Comput. Acoust., 04, 04, 341-359 (1996)
[13] Thierry, B.; Vion, A.; Tournier, S.; El Bouaji, M.; Colignon, D.; Marsic, N.; Antoine, X.; Geuzaine, C., GetDDM: An open framework for testing optimized Schwarz methods for time-harmonic wave problems, Comput. Phys. Comm., 203, 309-330 (2016) · Zbl 1380.65477
[14] Dular, P.; Geuzaine, C.; Henrotte, F.; Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method, IEEE Trans. Magn., 34 (5), 3395-3398 (1998)
[15] Geuzaine, C.; Remacle, J.-F., Gmsh: A \(3\)-D finte element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[16] Kupradze, V. D.; Gegelia, T. G.; Basheleĭshvili, M. O.; Burchuladze, T. V., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, (Kupradze, V. D., North-Holland Series in Applied Mathematics and Mechanics, vol. 25 (1979), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam), xix+929 · Zbl 0406.73001
[17] Darbas, M.; Le Louër, F., Well-conditioned boundary integral formulations for the iterative solution of elastic scattering problems, Math. Methods Appl. Sci., 38, 1705-1733 (2015) · Zbl 1319.35139
[18] Antoine, X.; Barucq, H.; Bendali, A., Bayliss-turkel-like radiation conditions on surfaces of arbitrary shape, J. Math. Anal. Appl., 229, 1, 184-211 (1999) · Zbl 0923.35179
[19] Antoine, X.; Darbas, M.; Lu, Y. Y., An improved surface radiation condition for high-frequency acoustic scattering problems, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4060-4074 (2006) · Zbl 1120.76058
[20] Chaillat, S.; Darbas, M.; Le Louër, F., Fast iterative boundary element methods for high-frequency scattering problems in 3D elastodynamics, J. Comput. Phys., 341, 429-446 (2017) · Zbl 1376.74011
[21] Virta, K.; Appelö, D., Formulae and software for particular solutions to the elastic wave equation in curved geometries, Int. J. Numer. Anal. Methods Geomech., 00, 1-19 (2016)
[22] Nédélec, J.-C., Acoustic and electromagnetic equations, (Applied Mathematical Sciences, vol. 144 (2001), Springer) · Zbl 0981.35002
[23] Abramowitz, M.; Stegun, I. A., Handbook Of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1974) · Zbl 0515.33001
[24] Darbas, M., Préconditionneurs analytiques de type Calderón pour les formulations intégrales des problèmes de diffraction d’ondes (2004), INSA: INSA Toulouse, (Ph.D. thesis)
[25] El Bouajaji, M.; Antoine, X.; Geuzaine, C., Approximate local magnetic-to-electric surface operators for time-harmonic Maxwell’s equations, J. Comput. Phys., 279, 241-260 (2014) · Zbl 1351.78010
[26] Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S., A symmetric trefftz-dg formulation based on a local boundary element method for the solution of the Helmholtz equation, J. Comput. Phys., 330, 1069-1092 (2017) · Zbl 1380.65360
[27] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM, Comput. Math. Appl., 30, 9, 9-37 (1995) · Zbl 0838.65108
[28] Geuzaine, C., Getdp: A general finite-element solver for the de rham complex, PAMM, 7 (2008)
[29] T. Chaumont-Frelet, S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problem, 2018.; T. Chaumont-Frelet, S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problem, 2018. · Zbl 1397.65231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.