×

The numerical study of a microscale model for lithium-ion batteries. (English) Zbl 1442.92214

Summary: We consider a thermodynamic consistent microscale model from for the transport processes of lithium ion concentration and charge in lithium ion batteries. A fully convergent finite element discretisation in space of arbitrary order with uniform time stepping is discussed for this strongly nonlinear coupled system of nonlinear PDEs. We analyse the error for higher order finite element methods on a representative geometry, which shows already the difficulties when dealing with a realistic microstructure. Moreover we derive explicit analytical formulas for the exact solutions for the elliptic subproblem and the complete time-dependent problem for a non-trivial geometry. These results show the need for appropriate boundary approximations as well as adaptive refinement strategies. In addition we incorporate a two-phase intercalation model for the electrode. This moving boundary model, also called Stefan problem, has also been implemented. Simulations of our battery model including the two-phase model will be shown.

MSC:

92E20 Classical flows, reactions, etc. in chemistry
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78A57 Electrochemistry
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Klinsmann, M.; Rosato, D.; Kamlah, M.; McMeeking, R. M., Modeling crack growth during Li extraction and insertion within the second half cycle, J. Power Sources, 331, 32-42 (2016)
[2] Shirazi, A. H. N.; Mohebbi, F.; Kakavand, M. R. A.; He, B.; Rabczuk, T., Paraffin nanocomposites for heat management of lithium-ion batteries: A computational investigation, J. Nanomater., 2016 (2016)
[3] Rahaman, O.; Mortazavi, B.; Rabczuk, T., A first-principles study on the effect of oxygen content on the structural and electronic properties of silicon suboxide as anode material for lithium ion batteries, J. Power Sources, 307, 657-664 (2016)
[4] Kespe, M.; Nirschl, H., Numerical simulation of lithium-ion battery performance considering electrode microstructure, Int. J. Energy Res., 39, 15, 2062-2074 (2015)
[5] Latz, A.; Zausch, J., Thermodynamic consistent transport theory of Li-ion batteries, J. Power Sources, 196, 6, 3296-3302 (2011)
[6] Latz, A.; Zausch, J., Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries, Electrochim. Acta, 110, 358-362 (2013)
[7] Newman, J.; Thomas-Alyea, K. E., Electrochemical Systems, Electrochemical Society Series (2004), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. Hoboken, NJ
[8] Less, G. B.; Seo, J. H.; Han, S.; Sastry, A. M.; Zausch, J.; Latz, A.; Schmidt, S.; Wieser, C.; Kehrwald, D.; Fell, S., Micro-scale modeling of Li-Ion batteries: Parameterization and validation, J. Electrochem. Soc., 159, 6, A697-A704 (2012)
[9] Ohlberger, M.; Rave, S.; Schindler, F., Model reduction for multiscale lithium-ion battery simulation, (Karasözen, B.; Manguoğlu, M.; Tezer-Sezgin, M.; Göktepe, S.; Uğur, Ö., Numerical Mathematics and Advanced Applications ENUMATH 2015. Numerical Mathematics and Advanced Applications ENUMATH 2015, Lecture Notes in Computational Science and Engineering, vol. 112 (2016), Springer, Cham), 317-331 · Zbl 1355.78031
[10] Ohlberger, M.; Rave, S.; Schmidt, S.; Zhang, S., A model reduction framework for efficient simulation of li-Ion Batteries, (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems. Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78 (2014), Springer, Cham), 695-702 · Zbl 1327.78021
[11] Popov, P.; Vutov, Y.; Margenov, S.; Iliev, O., Finite volume discretization of equations describing nonlinear diffusion in Li-ion batteries, (Dimov, I.; Dimova, S.; Kolkovska, N., Numerical Methods and Applications, NMA 2010. Numerical Methods and Applications, NMA 2010, Lecture Notes in Computer Science, vol. 6046 (2011), Springer, Berlin, Heidelberg), 338-346 · Zbl 1317.78010
[12] Zhang, S.; Iliev, O.; Schmidt, S.; Zausch, J., Comparison of two approaches for treatment of the interface conditions in FV Discretization of Pore Scale Models for Li-Ion Batteries, (Fuhrmann, J.; Ohlberger, M.; Rohde, C., Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems. Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78 (2014), Springer, Cham), 731-738 · Zbl 1327.78022
[13] Zhang, Q.; White, R. E., Moving boundary model for the discharge of a \(LiCoO_2\) electrode, J. Electrochem. Soc., 154, 6, A587-A596 (2007)
[14] Srinivasan, V.; Newman, J., Discharge model for the lithium iron-phosphate electrode, J. Electrochem. Soc., 151, 10, A1517-A1529 (2004)
[15] Subramanian, V. R.; Ploehn, H. J.; White, R. E., Shrinking core model for the discharge of a metal hydride electrode, J. Electrochem. Soc., 147, 8, 2868-2873 (2000)
[16] Deshpande, R.; Cheng, Y.-T.; Verbrugge, M. W.; Timmons, A., Diffusion induced stresses and strain energy in a phase-transforming spherical electrode particle, J. Electrochem. Soc., 158, 6, A718-A724 (2011)
[17] Dreyer, W.; Gaberšček, M.; Guhlke, C.; Huth, R.; Jamnik, J., Phase transition in a rechargeable lithium battery, European J. Appl. Math., 22, 3, 267-290 (2011) · Zbl 1229.78008
[18] Dreyer, W.; Guhlke, C., Sharp limit of the viscous Cahn-Hilliard equation and thermodynamic consistency, Contin. Mech. Thermodyn., 29, 4, 913-934 (2017) · Zbl 1379.80003
[19] Hofmann, T.; Müller, R.; Andrä, H.; Zausch, J., Numerical simulation of phase separation in cathode materials of lithium ion batteries, Int. J. Solids Struct., 100-101, 456-469 (2016)
[20] Maier, M., The Mathematical Analysis of a Micro Scale Model for Lithium-Ion Batteries (2016), Karlsruhe Institute of Technology (KIT): Karlsruhe Institute of Technology (KIT) Karlsruhe, (Ph.D. thesis)
[21] Latz, A.; Zausch, J., Multiscale modeling of lithium ion batteries: thermal aspects, Beilstein J. Nanotechnol., 6, 987-1007 (2015)
[22] Braess, D., Finite Elemente, Springer-Lehrbuch Masterclass (2013), Springer Spektrum, Berlin, Heidelberg · Zbl 1264.65189
[23] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15 (2008), Springer, New York, NY · Zbl 1135.65042
[24] Deuflhard, P., Newton Methods for Nonlinear Problems, Springer Series in Computational Mathematics, vol. 35 (2011), Springer, Berlin, Heidelberg · Zbl 1226.65043
[25] Knabner, P.; Angermann, L., Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts in Applied Mathematics, vol. 44 (2003), Springer, New York, NY · Zbl 1034.65086
[26] Davis, T. A., Algorithm 832: UMFPACK V4.3—An unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw. (TOMS), 30, 2, 196-199 (2004) · Zbl 1072.65037
[27] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II—A general-purpose object-oriented finite element library, ACM Trans, Math. Softw. (TOMS), 33, 4 (2007), 24/1-24/27 · Zbl 1365.65248
[28] Ahrens, J.; Geveci, B.; Law, C., 36 - ParaView: An end-user tool for large-data visualization, (Hansen, C. D.; Johnson, C. R., Visualization Handbook (2005), Butterworth-Heinemann: Butterworth-Heinemann Burlington), 717-731
[29] Stevenson, R., Optimality of a standard adaptive finite element method, Found. Comput. Math., 7, 2, 245-269 (2007) · Zbl 1136.65109
[30] Castelli, G. F., Die Numerische Simulation eines Mikroskalenmodells für Li-Ionen-Batterien (2016), Karlsruhe Institute of Technology (KIT): Karlsruhe Institute of Technology (KIT) Karlsruhe, (Master’s thesis)
[31] Nochetto, R. H.; Paolini, M.; Verdi, C., An adaptive finite element method for two-phase Stefan problems in two space dimensions. I. Stability and error estimates, Math. Comp., 57, 195, 73-108 (1991) · Zbl 0733.65087
[32] Nochetto, R. H.; Schmidt, A.; Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems, Math. Comp., 69, 229, 1-24 (2000) · Zbl 0942.65111
[33] Di Pietro, D. A.; Vohralík, M.; Yousef, S., Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem, Math. Comp., 84, 291, 153-186 (2015) · Zbl 1307.65123
[34] Elliott, C. M.; Ockendon, J. R., Weak and Variational Methods for Moving Boundary Problems, Research Notes in Mathematics, vol. 59 (1982), Pitman: Pitman Boston · Zbl 0476.35080
[35] Kornhuber, R., Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems, Advances in Numerical Mathematics (1997), B.G. Teubner: B.G. Teubner Stuttgart · Zbl 0879.65041
[36] Beckett, G.; Mackenzie, J. A.; Robertson, M. L., A moving mesh finite element method for the solution of two-dimensional Stefan problems, J. Comput. Phys., 168, 2, 500-518 (2001) · Zbl 1040.65080
[37] Renganathan, S.; Sikha, G.; Santhanagopalan, S.; White, R. E., Theroretical analysis of stresses in a lithium ion cell, J. Electrochem. Soc., 157, 2, A155-A163 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.