×

On COVID-19 modelling. (English) Zbl 1448.92335

Summary: This is an analysis of the COVID-19 pandemic by comparably simple mathematical and numerical methods. The final goal is to predict the peak of the epidemic outbreak per country with a reliable technique. The difference to other modelling approaches is to stay extremely close to the available data, using as few hypotheses and parameters as possible.
For the convenience of readers, the basic notions of modelling epidemics are collected first, focusing on the standard SIR model. Proofs of various properties of the model are included. But such models are not directly compatible with available data. Therefore a special variation of a SIR model is presented that directly works with the data provided by the Johns Hopkins University. It allows to monitor the registered part of the pandemic, but is unable to deal with the hidden part. To reconstruct data for the unregistered Infected, a second model uses current experimental values of the infection fatality rate and a data-driven estimation of a specific form of the recovery rate. All other ingredients are data-driven as well. This model allows predictions of infection peaks.
Various examples of predictions are provided for illustration. They show what countries have to face that are still expecting their infection peak. Running the model on earlier data shows how closely the predictions follow the transition from an uncontrolled outbreak to the mitigation situation by non-pharmaceutical interventions like contact restrictions.

MSC:

92D30 Epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

GitHub

References:

[1] Bommer, C., Vollmer, S.: Average detection rate of SARS-CoV-2 infections is estimated around six percent (April 2nd, 2020). https://reason.com/wp-content/uploads/2020/04/Bommer-Vollmer-2020-COVID-19-detection-April-2nd.pdf
[2] Dandekar, R., Barbastathis, G.: Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning (April 6th, 2020). 10.1101/2020.04.03.20052084. https://www.medrxiv.org/content/10.1101/2020.04.03.20052084v1
[3] De Brouwer, E., Raimondi, D., Moreau, Y.: Modeling the COVID-19 outbreaks and the effectiveness of the containment measures adopted across countries (April 19th, 2020). 10.1101/2020.04.02.20046375
[4] Dehning, J., Zierenberg, J., Spitzner, P., Wibral, M., Pinheiro Neto, J., Wilczek, M., Priesemann, V.: Inferring covid-19 spreading rates and potential change points for case number forecasts (May 4th (2020). arXiv:2004.01105v2
[5] Ferguson, N., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L., van Elsland, S., Thompson, H., Verity, R., Volz, E., Wang, H., Wang, Y., Walker, P., Walters, C., Winskill, P., Whittaker, C., Donnelly, C., Riley, S., Ghani, A.: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London (16-03-2020). 10.25561/77482
[6] Friston, K.J., Parr, T., Zeidman, P., Razi, A., Flandin, G., Daunizeau, J., Hulme, O.J., Billig, A.J., Litvak, V., Moran, R.J., Price, C.J., Lambert, C.: Dynamic causal modelling of covid-19. (April 9th, 2020)
[7] Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Di Filippo, A.; Di Matteo, A.; Colaneri, M., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med. (2020) · doi:10.1038/s41591-020-0883-7
[8] GitHub: Covid-19 repository at github (2020). https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
[9] An der Heiden, M., Buchholz, U.: Modellierung von Beispielszenarien der SARS-CoV-2-Epidemie 2020 in Deutschland. Bekanntmachungen des Robert Koch-Instituts (March 3rd, 2020). 10.25646/6571.2. https://edoc.rki.de/handle/176904/6547.2
[10] Hoppensteadt, F.; Waltman, P., A problem in the theory of epidemics I, Math. Biosci., 9, 71-91 (1970) · Zbl 0212.52105 · doi:10.1016/0025-5564(70)90094-5
[11] Hoppensteadt, F.; Waltman, P., A problem in the theory of epidemics II, Math. Biosci., 12, 133-145 (1971) · Zbl 0226.92011 · doi:10.1016/0025-5564(71)90078-2
[12] Kermack, W.; McKendrick, A., A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115, 700-721 (1927) · JFM 53.0517.01
[13] Khailaie, S., Mitra, T., Bandyopadhyay, A., Schips, M., Mascheroni, P., Vanella, P., Lange, B., Binder, S., Meyer-Hermann, M.: Estimate of the development of the epidemic reproduction number \(r_t\) from Coronavirus SARS-CoV-2 case data and implications for political measures based on prognostics (April 7th, 2020). 10.1101/2020.04.04.20053637. https://www.medrxiv.org/content/10.1101/2020.04.04.20053637v1
[14] Kucharski, A.; Russell, T.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20, 553-558 (2020) · doi:10.1016/S1473-3099(20)30144-4
[15] Maier, B. F.; Brockmann, D., Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science, 368, 6492, 742-746 (2020) · Zbl 1478.92209 · doi:10.1126/science.abb4557
[16] Mohring, J., Wegener, R., Gramsch, S., Schöbel, A.: Prognosemodelle für die Corona-Pandemie. Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM Kaiserslautern (April 29th, 2020). https://www.itwm.fraunhofer.de/content/dam/itwm/de/documents/PressemitteilungenPDF/2020/ 20200429_Bericht_Prognosemodelle-für-die-Coronapandemie.pdf
[17] Robert-Koch-Institut: SARS-CoV-2 Steckbrief zur Coronavirus-Krankheit-2019 (COVID-19). Tech. Rep., Robert-Koch-Institut (2020). (22.05.2020). https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html
[18] Schaback, R.: Modelling recovered cases and death probabilities for the COVID-19 outbreak (March 26th, 2020). arXiv:2003.12068
[19] Sentker, A.: Bloß raus hier! DIE ZEIT, p. 20 (2020). April 16th, 2020,
[20] Streeck, H., Schulte, B., Kuemmerer, B., Richter, E., Hoeller, T., Fuhrmann, C., Bartok, E., Dolscheid, R., Berger, M., Wessendorf, L., Eschbach-Bludau, M., Kellings, A., Schwaiger, A., Coenen, M., Hoffmann, P., Noethen, M., Eis-Huebinger, A.M., Exner, M., Schmithausen, R., Schmid, M., Hartmann, G.: Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event (May 8th, 2020). 10.1101/2020.05.04.20090076
[21] Verity, R., Okell, L.C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G., Thompson, H., Walker, P.G.T., Fu, H., Dighe, A., Griffin, J.T., Baguelin, M., Bhatia, S., Boonyasiri, A., Cori, A., Cucunubá, Z., FitzJohn, R., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Laydon, D., Nedjati-Gilani, G., Riley, S., van Elsland, S., Volz, E., Wang, H., Wang, Y., Xi, X., Donnelly, C.A., Ghani, A.C., Ferguson, N.M.: Estimates of the severity of coronavirus disease 2019: a model-based analysis, (June 1st, 2020). 10.1016/S1473-3099(20)30243-7
[22] WHO: Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) (Feb. 28th, 2020). https://www.who.int/publications-detail/report-of-the-who-China-joint-mission-on-coronavirus-disease-2019-(covid-19)
[23] Wikipedia: Compartmental models in epidemiology (June 2nd, 2020). https://en.Wikipedia.org/wiki/Compartmental_models_in_epidemiology
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.