×

Inverse shadowing and related measures. (English) Zbl 1451.37030

The authors introduce weaker forms of inverse shadowing and investigate inverse shadowing “almost always” – the so-called ergodic inverse shadowing (EIS) property. They also introduce a nonuniform version of inverse shadowing, the so-called individual inverse shadowing.
Let \(CM\) be the class of all the mappings with weakly continuous sets of Borel probability invariant measures. The authors prove that if \(f\in \mathrm{EIS}\), then \(f\in CM\). They study the sets of diffeomorphisms of a closed smooth manifold \(M\) having the individual inverse shadowing property on various subsets of the phase space. For a set \(A\) of diffeomorphisms, denote by Int\(^1(A)\) its interior with respect to the \(C^1\)-topology. It is proved that the set Int\(^1(\mathrm{IIS})\) coincides with the set of structurally stable diffeomorphisms, where \(\mathrm{IIS}\) is individual inverse shadowing property. Denote by \(\mathcal{I}_3\) the set of diffeomorphisms \(f\) of a smooth closed manifold \(M\). The authors prove that the set Int\(^1(\mathcal{I}_3)\) coincides with the set of \(\Omega\)-stable diffeomorphisms.

MSC:

37C50 Approximate trajectories (pseudotrajectories, shadowing, etc.) in smooth dynamics
37C20 Generic properties, structural stability of dynamical systems
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37B65 Approximate trajectories, pseudotrajectories, shadowing and related notions for topological dynamical systems
37D05 Dynamical systems with hyperbolic orbits and sets
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37A05 Dynamical aspects of measure-preserving transformations

References:

[1] Al-Nayef, A.; Diamond, P.; Kloeden, P., Bi-shadowing and delay equations, Dyn Stab Syst, 11, 121-134 (1996) · Zbl 0854.34064 · doi:10.1080/02681119608806220
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures (2005), Basel: Birkhäuser, Basel · Zbl 1090.35002
[3] Aoki, N., The set of axiom A diffeomorphisms with no cycle, Bol Soc Brasil Mat (NS), 23, 21-65 (1992) · Zbl 0772.58043 · doi:10.1007/BF02584810
[4] Corless, R. M.; Pilyugin, S. Y., Approximate and real trajectories for generic dynamical systems, J Math Anal Appl, 189, 409-423 (1995) · Zbl 0821.58036 · doi:10.1006/jmaa.1995.1027
[5] Fakhari, A.; Ghane, F. H., On shadowing: Ordinary and ergodic, J Math Anal Appl, 364, 151-155 (2010) · Zbl 1293.37014 · doi:10.1016/j.jmaa.2009.11.004
[6] Hayashi, S., Diffeomorphisms in ℱ^1(M) satisfy axiom A, Ergodic Theory Dynam Systems, 12, 233-253 (1992) · Zbl 0760.58035 · doi:10.1017/S0143385700006726
[7] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0878.58019
[8] Lee, K., Continuous inverse shadowing and hyperbolicity, Bull Aust Math Soc, 67, 15-26 (2003) · Zbl 1023.37010 · doi:10.1017/S0004972700033487
[9] Morales, C. A., Shadowable points, Dyn Syst, 31, 347-356 (2016) · Zbl 1369.37030 · doi:10.1080/14689367.2015.1131813
[10] Moriyasu, K.; Sakai, K.; Sumi, N., Diffeomorphisms with shadowable measures, Axioms, 7, 93 (2018) · Zbl 1432.37050 · doi:10.3390/axioms7040093
[11] Palmer, K., Shadowing in Dynamical Systems: Theory and Applications (2000), Dordrecht-Boston-London: Kluwer Acad Publ, Dordrecht-Boston-London · Zbl 0997.37001
[12] Pilyugin, S. Y., Shadowing in Dynamical Systems (1999), Berlin-Heidelberg: Springer-Verlag, Berlin-Heidelberg · Zbl 0954.37014
[13] Pilyugin, S. Y., Inverse shadowing by continuous methods, Discrete Contin Dyn Syst, 8, 29-38 (2002) · Zbl 0998.37006 · doi:10.3934/dcds.2002.8.29
[14] Pilyugin, S. Y., Spaces of Dynamical Systems (2012), Berlin: De Gruyter, Berlin · Zbl 1294.37002
[15] Pilyugin, S. Y.; Rodionova, A. A.; Sakai, K., Orbital and weak shadowing properties, Discrete Contin Dyn Syst, 9, 287-308 (2003) · Zbl 1015.37020 · doi:10.3934/dcds.2003.9.287
[16] Pilyugin, S. Y.; Sakai, K., Shadowing and Hyperbolicity (2017), Cham: Springer-Verlag, Cham · Zbl 1426.37004
[17] Wen, L., Differentiable Dynamical Systems: An Introduction to Structural Stability and Hyperbolicity (2016), Providence: Amer Math Soc, Providence · Zbl 1362.37054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.