×

Linear matroid intersection is in quasi-NC. (English) Zbl 1468.90150

Summary: Given two matroids on the same ground set, the matroid intersection problem asks to find a common independent set of maximum size. In case of linear matroids, the problem had a randomized parallel algorithm but no deterministic one. We give an almost complete derandomization of this algorithm, which implies that the linear matroid intersection problem is in quasi-NC. That is, it has uniform circuits of quasi-polynomial size \(n^{O(\log n)}\) and \(O(\mathrm{polylog} (n))\) depth. Moreover, the depth of the circuit can be reduced to \(O(\log^2n)\) in case of zero characteristic fields. This generalizes a similar result for the bipartite perfect matching problem. Our main technical contribution is to derandomize the Isolation lemma for the family of common bases of two matroids. We use our isolation result to give a quasi-polynomial time blackbox algorithm for a special case of Edmonds’ problem, i.e., singularity testing of a symbolic matrix, when the given matrix is of the form \(A_0 + A_{1 }x_1 + \cdots + A_m x_m \), for an arbitrary matrix \(A_0\) and rank-1 matrices \(A_1, A_2, \dots, A_m\). This can also be viewed as a blackbox polynomial identity testing algorithm for the corresponding determinant polynomial. Another consequence of this result is a deterministic solution to the maximum rank matrix completion problem. Finally, we use our result to find a deterministic representation for the union of linear matroids in quasi-NC.

MSC:

90C57 Polyhedral combinatorics, branch-and-bound, branch-and-cut
68W10 Parallel algorithms in computer science
05B35 Combinatorial aspects of matroids and geometric lattices
68W20 Randomized algorithms
Full Text: DOI

References:

[1] Manindra Agrawal (2005). Proving Lower Bounds Via Pseudo-random Generators. In FSTTCS, volume 3821 of Lecture Notes in Computer Science, 92-105. · Zbl 1172.68479
[2] Matthew Anderson, Amir Shpilka & Ben Lee Volk (2016). Personal communication.
[3] David A. Mix Barrington (1992). Quasipolynomial Size Circuit Classes. In Proceedings of the Seventh Annual Structure in Complexity Theory Conference, 86-93. doi:10.1109/SCT.1992.215383.
[4] Stuart J. Berkowitz (1984). On computing the determinant in small parallel time using a small number of processors. Information Processing Letters18(3), 147-150. ISSN 0020-0190. · Zbl 0541.68019
[5] Allan Borodin, Stephen Cook & Nicholas Pippenger (1984). Parallel Computation for Well-endowed Rings and Space-bounded Probabilistic Machines. Information and Control58(1-3), 113-136. ISSN 0019-9958. · Zbl 0598.68043
[6] Richard A. Demillo & Richard J. Lipton (1978). A probabilistic remark on algebraic program testing. Information Processing Letters7(4), 193-195. ISSN 0020-0190. · Zbl 0397.68011
[7] Edmonds, Jack, Systems of distinct representatives and linear algebra, Journal of research of the National Bureau of Standards, 71, 241-245 (1967) · Zbl 0178.03002 · doi:10.6028/jres.071B.033
[8] Edmonds, Jack, Matroid partition, Mathematics of the Decision Sciences, 11, 335-345 (1968) · Zbl 0197.00802
[9] Edmonds, Jack, Submodular Functions, Matroids, and Certain Polyhedra, Combinatorial Structures and Their Applications, 69-87 (1970), New York: Gordon and Breach, New York · Zbl 0268.05019
[10] Jack Edmonds (1979). Matroid Intersection. In Discrete Optimization I (Proceedings of the Advanced Research Institute on Discrete Optimization and Systems Applications of the Systems Science Panel of NATO and of the Discrete Optimization Symposium), E.L. Johnson P.L. Hammer & B.H. Korte, editors, volume 4, 39-49. Elsevier. http://www.sciencedirect.com/science/article/pii/S0167506008708173. · Zbl 0416.05025
[11] Stephen Fenner, Rohit Gurjar & Thomas Thierauf (2019). Bipartite Perfect Matching is in Quasi-NC. SIAM Journal on Computing0(0), STOC16-218-STOC16-235. doi:10.1137/16M1097870. · Zbl 1373.68267
[12] Stephen A. Fenner, Rohit Gurjar & Thomas Thierauf (2016). Bipartite perfect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 754-763. · Zbl 1373.68267
[13] Michael A. Forbes (2014). Polynomial Identity Testing of Read-Once Oblivious Algebraic Branching Programs. Ph.D. thesis, MIT.
[14] Michael L. Fredman, János Komlós & Endre Szemerédi (1984). Storing a Sparse Table with \(O(1)\) Worst Case Access Time. J. ACM31(3), 538-544. ISSN 0004-5411. doi:10.1145/828.1884. · Zbl 0629.68068
[15] James F. Geelen (1999). Maximum rank matrix completion. Linear Algebra and its Applications288, 211-217. ISSN 0024-3795. http://www.sciencedirect.com/science/article/pii/S0024379598102100. · Zbl 0933.15026
[16] Rohit Gurjar & Thomas Thierauf (2017). Linear Matroid Intersection is in quasi-NC. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC, 821-830 (2017), New York, NY, USA: ACM, New York, NY, USA · Zbl 1370.68325
[17] Rohit Gurjar, Thomas Thierauf & Nisheeth K. Vishnoi (2017). Isolating a Vertex via Lattices: Polytopes with Totally Unimodular Faces. CoRRabs/1708.02222. http://arxiv.org/abs/1708.02222.
[18] G‚bor Ivanyos, Marek Karpinski & Nitin Saxena, , : Deterministic polynomial time algorithms for matrix completion problems. SIAM Journal of computing39(8), 2010, 2010 · Zbl 1209.68269
[19] Valentine Kabanets & Russell Impagliazzo (2003). Derandomizing polynomial identity tests means proving circuit lower bounds. STOC 355-364. · Zbl 1192.94144
[20] Richard M. Karp, Eli Upfal & Avi Wigderson (1988). The complexity of parallel search. Journal of Computer and System Sciences36(2), 225-253. ISSN 0022-0000. http://www.sciencedirect.com/science/article/pii/002200008890027X. · Zbl 0651.68048
[21] László Lovász (1985). Computing ears and branchings in parallel. 26th Annual Symposium on Foundations of Computer Science (SFCS 1985) 464-467.
[22] László Lovász (1989). Singular spaces of matrices and their application in combinatorics. Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society20(1), 87-99. ISSN 1678-7714. doi:10.1007/BF02585470. · Zbl 0757.05035
[23] Ketan Mulmuley, Umesh V. Vazirani & Vijay V. Vazirani (1987). Matching is as easy as matrix inversion. Combinatorica7, 105-113. ISSN 0209-9683. doi:10.1007/BF02579206. · Zbl 0632.68041
[24] Murota, Kazuo: Mixed Matrices: Irreducibility and Decomposition. In: Brualdi, Richard A., Friedland, Shmuel, Klee, Victor (eds.) Combinatorial and Graph-Theoretical Problems in Linear Algebra, pp. 39-71. Springer, New York, New York, NY 1993. ISBN 978-1-4613-8354-3. doi:10.1007/978-1-4613-8354-3_2 · Zbl 0791.15018
[25] H. Narayanan, Huzur Saran & Vijay V. Vazirani (1994). Randomized Parallel Algorithms for Matroid Union and Intersection, With Applications to Arboresences and Edge-Disjoint Spanning Trees. SIAM J. Comput.23(2), 387-397. doi:10.1137/S0097539791195245. · Zbl 0796.05021
[26] Oxley, James G.: Matroid Theory (Oxford Graduate Texts in Mathematics). Oxford University Press Inc, New York, NY, USA 2006. ISBN 0199202508
[27] Alexander Schrijver (2003). Combinatorial optimization : polyhedra and efficiency. Vol. B. , Matroids, trees, stable sets. chapters 39-69. Algorithms and combinatorics. Springer-Verlag, Berlin, Heidelberg, New York, N.Y., et al. ISBN 3-540-44389-4. http://opac.inria.fr/record=b1124843.
[28] Schwartz, Jacob T., Fast Probabilistic Algorithms for Verification of Polynomial Identities, Journal of the ACM, 27, 4, 701-717 (1980) · Zbl 0452.68050 · doi:10.1145/322217.322225
[29] L. G. Valiant (1979). Completeness Classes in Algebra. In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, 249-261. ACM, New York, NY, USA. doi:10.1145/800135.804419.
[30] L. G. Valiant, S. Skyum, S. Berkowitz & C. Rackoff (1983). Fast parallel computation of polynomials using few processors. SIAM journal of computing12(4), 641-644. ISSN 0097-5397 (print), 1095-7111 (electronic). · Zbl 0524.68028
[31] Richard Zippel (1979). Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (EUROSAM), 216-226. Springer-Verlag. ISBN 3-540-09519-5. · Zbl 0418.68040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.