×

On the bilinear square Fourier multiplier operators associated with \(g_\lambda^\ast\) function. (English) Zbl 1471.42027

Let \(\vec{f}= (f_1, f_2)\). Consider the bilinear square-function Fourier multiplier operator \(\operatorname{Im}_{\lambda, m}\) associated with the multilinear \(g_{\lambda}^\ast\)-function due to S. Shi et al. [J. Math. Pures Appl. (9) 101, No. 3, 394–413 (2014; Zbl 1287.42017)] \[ \operatorname{Im}_{\lambda, m}(\vec{f})(x) = {\bigg(} \int\!\!\!\int_{\mathbb{R}_{+}^{n+1}} \ {\bigg(} \frac{t}{t+|x-z|} {\bigg)}^{n\lambda} \ |T_{m}(\vec{f})(z)|^2 \ \frac{dz \, dt}{t^{n+1}} {\bigg)}^{1/2} \] where \[T_{m}(\vec{f})(z) = \frac{1}{t^{2n}}\int_{(\mathbb{R}^{2n})} K{\bigg(}\frac{z-y_1}{t}, \frac{z-y_2}{t} {\bigg)} f_1(y_1)f_2(y_2) \, dy_1\, dy_2. \]
For the main results, we assume that the weight \(\vec{\omega}=(\omega_1, \omega_2)\) satisfies multiple weights classes \(A_{\vec{P}}\) condition introduced in [A. K. Lerner et al., Adv. Math. 220, No. 4, 1222–1264 (2009; Zbl 1160.42009)], namely, \[ \sup_{Q} \bigg( \frac{1}{|Q|} \int_{Q} \prod_{i=1}^{2} \omega_i^{1/p_i} \bigg)^{1/p} \prod_{i=1}^{2} \bigg( \frac{1}{|Q|} \int_{Q} \omega_i^{1-p_i^\prime} \bigg)^{1/p^\prime} < \infty, \] where \(1 \leq p_1\), \(p_2 < \infty\), \(1/p = 1/p_1 + 1/p_2\), \(\vec{P} = (p_1, p_2)\), and denote \(\nu_{\vec{\omega}} = \prod_{i=1}^{2} \omega_i^{p/p_i}\) for given \(\vec{\omega}\).
We also assume that \(m \in L^{\infty}((\mathbb{R} )^2)\) satisfies the following conditions \[ \big{|}\partial^{\alpha}m(\xi_1, \xi_2) \big{|} \leq C \, \frac{(|\xi_1|+|\xi_2|)^{-|\alpha|+\epsilon_1}}{(1+|\xi_1|+|\xi_2|)^{\epsilon_1+\epsilon_2}} \tag{1}\]
and
\[\big{|}m(\xi_1, \xi_2) \big{|} \leq C \, \frac{(|\xi_1|+|\xi_2|)^{-s+\epsilon_1}}{(1+|\xi_1|+|\xi_2|)^{\epsilon_1+\epsilon_2}}\tag{2} \] for some \(\epsilon_1, \epsilon_2 > 0\), \(|\alpha| \leq s\) and \(s \in [n+1,2n]\) for some integer \(s\).
In this paper the authors prove that if \(p_0 < p_1\), \(p_2 < \infty\), \(1/p = 1/p_1 + 1/p_2\), \(\nu_{\vec{\omega}} \in A_{\vec{P}/p_0}\) and \(m \in L^{\infty}((\mathbb{R} )^2)\) satisfies (1) and (2), then Fourier multiplier operator \(\operatorname{Im}_{\lambda, m}\) maps from \(L^{p_1}(\omega_1) \times L^{p_2}(\omega_2)\) into \(L^{p}(\nu_{\vec{\omega}})\) where \(s\) is an integer with \(s \in [n+1,2n]\) and \(\lambda > 2s/n + 1\) and \(2n/s \leq p_0 \leq 2\). Also if \( p_0 > 2n/s\) and \(p_1 = p_0\) or \(p_2 = p_0\), then \(\operatorname{Im}_{\lambda, m}\) satisfies a weighted weak type \((p,p)\) estimate from \(L^{p_1}(\omega_1) \times L^{p_2}(\omega_2)\) into \(L^{p, \infty}(\nu_{\vec{\omega}})\). Moreover, they treat the commutators of \(\operatorname{Im}_{\lambda, m}\) under the same condition as above to obtain a strong \(L^{p}(\nu_{\vec{\omega}})\)-bound on products of weighted Lebesgue spaces \(L^{p_1}(\omega_1) \times L^{p_2}(\omega_2)\) and the weighted endpoint \(L\log L\)-type estimate with \(\vec{\omega} \in A_{(1,1)}\).

MSC:

42B15 Multipliers for harmonic analysis in several variables
42B25 Maximal functions, Littlewood-Paley theory
47G10 Integral operators
Full Text: DOI

References:

[1] Bui, T. A. and Duong, X. T., On commutators of vector BMO functions and multilinear singular integrals with non-smooth kernels, J. Math. Anal. Appl.371 (2010), 80-84. · Zbl 1201.42007
[2] Bui, T. A. and Duong, X. T., Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers, Bull. Sci. Math.137(1) (2013), 63-75. · Zbl 1266.42019
[3] Chen, X., Xue, Q. and Yabuta, K., On multilinear Littlewood-Paley operators, Nonlinear Anal.115 (2015), 25-40. · Zbl 1308.42015
[4] Coifman, R. R., Deng, D. and Meyer, Y., Domains de la racine carre de certains oprateurs differentiels accrtifs, Ann. Inst. Fourier (Grenoble)33 (1983), 123-134. · Zbl 0497.35088
[5] Coifman, R. R., Mcintosh, A. and Meyer, Y., Lintegrale de Cauchy definit un operateur borne sur L^2 pour les courbes lips-chitziennes, Ann. of Math. (2)116 (1982), 361-387. · Zbl 0497.42012
[6] Coifman, R. R. and Meyer, Y., On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc.212 (1975), 315-331. · Zbl 0324.44005
[7] Coifman, R. R. and Meyer, Y., Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble)28 (1978), 177-202. · Zbl 0368.47031
[8] Coifman, R. R. and Meyer, Y., Au-delà des opérateurs pseudo-différentiels, , Société Mathématique De France, Paris, 1978. · Zbl 0483.35082
[9] David, G. and Journé, J. L., Une caractrisation des oprateurs intgraux singuliers borns sur L^2(ℝ^n), C. R. Math. Acad. Sci. Paris296 (1983), 761-764. · Zbl 0523.45009
[10] Fabes, E. B., Jerison, D. and Kenig, C., Multilinear Littlewood-Paley estimates with applications to partial differential equations, Proc. Natl Acad. Sci.79 (1982), 5746-5750. · Zbl 0501.35014
[11] Fabes, E. B., Jerison, D. and Kenig, C., Necessary and sufficient conditions for absolute continuity of elliptic harmonic measure, Ann. of Math. (2)119 (1984), 121-141. · Zbl 0551.35024
[12] Fabes, E. B., Jerison, D. and Kenig, C., Multilinear square functions and partial differential equations, Amer. J. Math.107 (1985), 1325-1368. · Zbl 0655.35007
[13] Fefferman, C., Inequalities for strongly singular convolution operators, Acta Math.124 (1970), 9-36. · Zbl 0188.42601
[14] Fujita, M. and Tomita, N., Weighted norm inequalities for multilinear Fourier multipliers, Trans. Amer. Math. Soc.364 (2012), 6335-6353. · Zbl 1275.42015
[15] Grafakos, L. and Si, Z., The Hörmander multiplier theorem for multilinear operators, J. Reine Angew. Math.668 (2012), 133-147. · Zbl 1254.42017
[16] Grafakos, L., Miyachi, A. and Tomita, N., On multilinear Fourier multipliers of limited smoothness, Canad. J. Math.65(2) (2013), 299-330. · Zbl 1275.42016
[17] Grafakos, L. and Torres, R., Multilinear Calderón-Zygmund theory, Adv. Math.165 (2002), 124-164. · Zbl 1032.42020
[18] Grafakos, L. and Torres, R. H., Maximal operator and weighted norm inequalities for multilinear singular integrals, Indiana Univ. Math. J.51(5) (2002), 1261-1276. · Zbl 1033.42010
[19] Lerner, A. K., Ombrosi, S., Pérez, C., Torres, R. H. and Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math.220(4) (2009), 1222-1264. · Zbl 1160.42009
[20] Li, K. and Sun, W., Weighted estimates for multilinear Fourier multipliers, Forum Math.27(2) (2015), 1101-1116. · Zbl 1315.42008
[21] Li, W., Xue, Q. and Yabuta, K., Weighted version of Carleson measure and multilinear Fourier multiplier, Forum Math.27(2) (2015), 787-805. · Zbl 1316.42014
[22] Muckenhoupt, B. and Wheeden, R. L., Norm inequalities for the Littlewood-Paley function g_𝜆^∗, Trans. Amer. Math. Soc.191 (1974), 95-111. · Zbl 0289.44005
[23] Shi, S., Xue, Q. and Yabuta, K., On the boundedness of multilinear Littlewood-Paley g_𝜆^∗ function, J. Math. Pures Appl.101(3) (2014), 394-413. · Zbl 1287.42017
[24] Stein, E. M., On some function of Littlewood-Paley and Zygmund, Bull. Amer. Math. Soc.67 (1961), 99-101. · Zbl 0127.32001
[25] Tomita, N., A Hörmander type multiplier theorem for multilinear operators, J. Funct. Anal.259 (2010), 2028-2044. · Zbl 1201.42005
[26] Xue, Q., Peng, X. and Yabuta, K., On the theory of multilinear Littlewood-Paley g function, J. Math. Soc. Japan67(2) (2015), 535-559. · Zbl 1325.42024
[27] Xue, Q. and Yan, J., On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels, J. Math. Anal. Appl.422 (2015), 1342-1362. · Zbl 1301.42036
[28] Zengyan, S., Xue, Q. and Yabuta, K., On the bilinear square Fourier multiplier operators and related multilinear square functions, Sci. China Math.60(8) (2017), 1477-1502. · Zbl 1385.42016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.