×

Generalized Lambert series, Raabe’s cosine transform and a generalization of Ramanujan’s formula for \(\zeta (2m+1)\). (English) Zbl 1462.11064

A famous formula of Ramanujan states that for any \(\alpha ,\beta >0\) with \(\alpha \beta =\pi ^{2} \) and any nonzero integer \(m\) one has \[\frac{1}{\alpha ^{m} } \left\{\frac{1}{2} \zeta (2m+1)+\sum _{n=1}^{\infty }\frac{1}{n^{2m+1} (e^{2\alpha {\kern 1pt} n} -1)} \right\}=\frac{1}{(-\beta )^{m} } \left\{\frac{1}{2} \zeta (2m+1)+\sum _{n=1}^{\infty }\frac{1}{n^{2m+1} (e^{2\beta {\kern 1pt} n} -1)} \right\}\] \(-4^{m} \sum _{k=0}^{m+1}\frac{(-1)^{k} B_{2k} B_{2m+2-2k} }{(2k)!(2m+2-2k)!} {\kern 1pt} {\kern 1pt} \alpha ^{m+1-k} \beta ^{k} \).
Here, \(\zeta (s)\) is Riemann’s zeta function and \(B_{k} \) are the Bernoulli numbers. The authors obtain two-parameter extensions of this formula by developing new transformations for the Lambert series \(\sum _{n=1}^{\infty }\frac{n^{N-2m} \exp (-\alpha {\kern 1pt} n^{N} x)}{1-\exp (-n^{N} x)} \quad (0<\alpha \le 1,\; x>0,\; N\in \mathrm{N},\; m\in \mathrm{Z})\). An important tool in this work is an extension of Raabe’s cosine transform. The paper contains numerous interesting results including a relation between the values of \(\zeta (s)\) at certain odd integers.

MSC:

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11J81 Transcendence (general theory)

Software:

DLMF
Full Text: DOI

References:

[1] Abramowitz, M. and Stegun, I. A. (eds), Handbook of Mathematical Functions, Dover, New York, 1965. · Zbl 0171.38503
[2] Apéry, R., Irrationalité de 𝜁(2) et 𝜁(3), Astérisque61 (1979), 11-13. · Zbl 0401.10049
[3] Apéry, R., Interpolation de fractions continues et irrationalité de certaines constantes, , Bibliothéque Nationale, Paris, 1981, 37-63. · Zbl 0463.10024
[4] Apostol, T. M., Modular Functions and Dirichlet Series in Number Theory, 2nd ed. Springer, 1990. · Zbl 0697.10023
[5] Apostol, T. M., Introduction to Analytic Number Theory, Springer, New York, 1998. · Zbl 1154.11300
[6] Ball, K. and Rivoal, T., Irrationalité d’une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math.146(1) (2001), 193-207; (French). · Zbl 1058.11051
[7] Berndt, B. C., Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math.7 (1977), 147-189. · Zbl 0365.10021
[8] Berndt, B. C., Ramanujan’s Notebooks, Part II, Springer, New York, 1989. · Zbl 0716.11001
[9] Berndt, B. C., Ramanujan’s Notebooks, Part III, Springer, New York, 1991. · Zbl 0733.11001
[10] Berndt, B. C., Chan, H. H. and Tanigawa, Y., Two Dirichlet series evaluations found on page 196 of Ramanujan’s Lost Notebook, Math. Proc. Cambridge Philos. Soc.153(2) (2012), 341-360. · Zbl 1275.11116
[11] Berndt, B. C., Dixit, A., Roy, A. and Zaharescu, A., New pathways and connections in number theory and analysis motivated by two incorrect claims of Ramanujan, Adv. Math.304 (2017), 809-929. · Zbl 1396.11103
[12] Berndt, B. C. and Straub, A., On a secant Dirichlet series and Eichler integrals of Eisenstein series, Math. Z.284(3-4) (2016), 827-852. · Zbl 1402.11060
[13] Berndt, B. C. and Straub, A., “Ramanujan’s formula for 𝜁(2n + 1)”, in Exploring the Riemann Zeta Function, (eds. Montgomery, H., Nikeghbali, A. and Rassias, M.) Springer, 2017, 13-34. · Zbl 1497.11198
[14] Boxall, G. J. and Jones, G. O., Algebraic values of certain analytic functions, Int. Math. Res. Not. IMRN2015(4) (2015), 1141-1158. · Zbl 1388.11041
[15] Bringmann, K., Folsom, A., Ono, K. and Rolen, L., Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, American Mathematical Society, Providence, 2017. · Zbl 1459.11118
[16] Cassels, J. W. S., Footnote to a note of Davenport and Heilbronn, J. Lond. Math. Soc. (2)36 (1961), 177-184. · Zbl 0097.03403
[17] Dai, H. H. and Naylor, D., On an asymptotic expansion of Fourier integrals, Proc. R. Soc. Lond. Ser. A436(1896) (1992), 109-120. · Zbl 0752.42006
[18] Davenport, H., Multiplicative Number Theory, 3rd ed. Springer, New York, 2000. · Zbl 1002.11001
[19] Davenport, H. and Heilbronn, H., On the zeros of certain Dirichlet series, I, J. Lond. Math. Soc. (2)11 (1936), 181-185. · Zbl 0014.21601
[20] Dixit, A., The Laplace transform of the psi function, Proc. Amer. Math. Soc.138(2) (2010), 593-603. · Zbl 1186.33001
[21] Dixit, A. and Maji, B., Generalized Lambert series and arithmetic nature of odd zeta values, preprint, 2017, arXiv:1709.00022v3 (submitted for publication). · Zbl 1437.11124
[22] Dixon, A. L. and Ferrar, W. L., Lattice-point summation formulae, Q. J. Math.2 (1931), 31-54. · Zbl 0001.13001
[23] Dixon, A. L. and Ferrar, W. L., Infinite integrals of Bessel functions, Q. J. Math.1 (1935), 161-174. · Zbl 0012.30302
[24] Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F., Higher Transcendental Functions, , McGraw-Hill, New York, 1953. · Zbl 0051.30303
[25] Erdös, P., On arithmetical properties of Lambert series, J. Indian Math. Soc. (N.S.)12 (1948), 63-66. · Zbl 0032.01701
[26] Gradshteyn, I. S. and Ryzhik, I. M. (eds), Table of Integrals, Series, and Products, 8th ed. (eds. Zwillinger, D. and Moll, V. H.) Academic Press, New York, 2015. · Zbl 1300.65001
[27] Grosswald, E., Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss. Göttinger Math.-Phys. Kl. II (1970), 9-13. · Zbl 0206.05902
[28] Grosswald, E., Comments on some formulae of Ramanujan, Acta Arith.21 (1972), 25-34. · Zbl 0246.10024
[29] Grosswald, E., Relations between the values at integral arguments of Dirichlet series that satisfy functional equations, , American Mathematical Society, Providence, 1973, 111-122. · Zbl 0266.10035
[30] Guinand, A. P., On Poisson’s summation formula, Ann. of Math. (2)42 (1941), 591-603. · Zbl 0025.33802
[31] Gonek, S. M., Analytic Properties of zeta and \(L\)-functions, Thesis, University of Michigan, 1979.
[32] Gun, S., Murty, M. R. and Rath, P., Transcendental values of certain Eichler integrals, Bull. Lond. Math. Soc.43(5) (2011), 939-952. · Zbl 1278.11056
[33] Hančl, J. and Kristensen, S., Metrical irrationality results related to values of the Riemann \(𝜁\)-function, preprint, February 12, 2018, arXiv:1802.03946v1.
[34] Jahnke, E. and Emde, F., Tables of Fiunctions With Formulae and Curves, 4th ed. Dover Publications, New York, 1945. · Zbl 0061.29906
[35] Kanemitsu, S., Tanigawa, Y. and Yoshimoto, M., On the values of the Riemann zeta-function at rational arguments, Hardy-Ramanujan J.24 (2001), 11-19. · Zbl 0992.11052
[36] Kanemitsu, S., Tanigawa, Y. and Yoshimoto, M., On rapidly convergent series for the Riemann zeta-values via the modular relation, Abh. Math. Semin. Univ. Hambg.72 (2002), 187-206. · Zbl 1013.11048
[37] Kanemitsu, S., Tanigawa, Y. and Yoshimoto, M., On multiple Hurwitz zeta-function values at rational arguments, Acta Arith.107(1) (2003), 45-67. · Zbl 1054.11043
[38] Kirschenhofer, P. and Prodinger, H., On some applications of formulae of Ramanujan in the analysis of algorithms, Mathematika38(1) (1991), 14-33. · Zbl 0765.68051
[39] Koyama, S. and Kurokawa, N., Kummer’s formula for multiple gamma functions, J. Ramanujan Math. Soc.18(1) (2003), 87-107. · Zbl 1049.11098
[40] Kummer, E. E., Beitrag zur Theorie der Function 𝛤(x) = ∫_0^∞e^-vv^x-1 dv, J. Reine Angew. Math.35 (1847), 1-4. · ERAM 035.0977cj
[41] Lagarias, J., Euler’s constant: Euler’s work and modern developments, Bull. Amer. Math. Soc.50(4) (2013), 527-628. · Zbl 1282.11002
[42] Lagrange, J., Une formule sommatoire et ses applications, Bull. Sci. Math. (2)84 (1960), 105-110. · Zbl 0113.04902
[43] Lerch, M., Dalši studie v oboru Malmsténovských řad, Rozpravy České Akad.3(28) (1894), 1-61.
[44] Lerch, M., Sur la fonction 𝜁(s) pour valeurs impaires de l’argument, J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira Coimbra14 (1901), 65-69.
[45] Luca, F. and Tachiya, Y., Linear independence of certain Lambert series, Proc. Amer. Math. Soc.142(10) (2014), 3411-3419. · Zbl 1305.11063
[46] Magnus, W., Oberhettinger, F. and Soni, R. P., Formulas and Theorems for the Special Functions of Mathematical Physics, 52, 3rd ed. Springer, New York, 1966. · Zbl 0143.08502
[47] Masser, D., Rational values of the Riemann zeta function, J. Number Theory131 (2011), 2037-2046. · Zbl 1267.11091
[48] Murty, M. R., Smyth, C. and Wang, R. J., Zeros of Ramanujan polynomials, J. Ramanujan Math. Soc.26(1) (2011), 107-125. · Zbl 1238.11033
[49] Oberhettinger, F., Tables of Mellin Transforms, Springer, New York, 1974. · Zbl 0289.44003
[50] Olver, F. W. J., Error bounds for stationary phase approximations, SIAM J. Math. Anal.5(1) (1974), 19-29. · Zbl 0239.65028
[51] Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010. · Zbl 1198.00002
[52] Paris, R. B. and Kaminski, D., Asymptotics and Mellin-Barnes Integrals, , Cambridge University Press, Cambridge, 2001. · Zbl 0983.41019
[53] Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I., More Special Functions 3, , Gordon and Breach, New York, 1986. · Zbl 0733.00004
[54] Rademacher, H., Trends in research: The Analytic Number Theory, Address delivered by invitation of the American Mathematical Society Program Committee, September 5, 1941; Bull. Amer. Math. Soc. 48 (1942), 379-401. · Zbl 0063.06368
[55] Ramanujan, S., Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957; 2nd ed., 2012. · Zbl 0138.24201
[56] Ramanujan, S., The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. · Zbl 0639.01023
[57] Rivoal, T., La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris Sér. I Math.331(4) (2000), 267-270. · Zbl 0973.11072
[58] Schlömilch, O., Ueber einige unendliche Reihen, Berichte über die Verh. d. Könige Sächsischen Gesell. Wiss. zu Leipzig29 (1877), 101-105. · JFM 09.0194.03
[59] Spira, R., Zeros of Hurwitz zeta functions, Math. Comp.30(136) (1976), 863-866. · Zbl 0341.10034
[60] Srivastava, H. M., Further series representations for 𝜁(2n + 1), Appl. Math. Comput.97 (1998), 1-15. · Zbl 0939.11031
[61] Temme, N. M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, Wiley-Interscience Publication, New York, 1996. · Zbl 0856.33001
[62] Terras, A., Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arith.29(2) (1976), 181-189. · Zbl 0282.10025
[63] Terras, A., The Fourier expansion of Epstein’s zeta function over an algebraic number field and its consequences for algebraic number theory, Acta Arith.32 (1977), 37-53. · Zbl 0306.12006
[64] Titchmarsh, E. C., Theory of Fourier Integrals, 2nd ed. Clarendon Press, Oxford, 1948.
[65] Voronin, S. M., On the zeros of zeta-functions of quadratic forms, Trudy Mat. Inst. Steklov142 (1976), 135-147; English translation in Proc. Steklov Inst. Math. 3 (1979), 143-155. · Zbl 0432.10009
[66] Waldschmidt, M., Transcendence of periods: the state of the art, Pure Appl. Math. Q.2(2) (2006), 435-463. · Zbl 1220.11090
[67] Wigert, S., Sur une extension de la série de Lambert, Arkiv Mat. Astron. Fys.19 (1925), 13 pp. · JFM 51.0268.02
[68] Wilton, J. R., A proof of Burnside’s formula for log𝛤(x + 1) and certain allied properties of Riemann’s 𝜁-function, Mess. Math.52 (1922/1923), 90-93. · JFM 48.0409.04
[69] Zudilin, W. W., One of the numbers 𝜁(5), 𝜁(7), 𝜁(9) and 𝜁(11) is irrational, Uspekhi Mat. Nauk56(4) (2001), 149-150; translation in Russian Math. Surveys 56(4) (2001), 774-776. · Zbl 1047.11072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.