×

Accuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processes. (English) Zbl 1439.86013

Summary: Subsurface flow and geomechanics are often modeled with sequential approaches. This can be computationally beneficial compared with fully coupled schemes, while it requires usually compromises in numerical accuracy, at least when the sequential scheme is non-iterative. We discuss the influence of the choice of scheme on the numerical accuracy and the expected computational effort based on a comparison of a fully coupled scheme, a scheme employing a one-way coupling, and an iterative scheme using a fixed-stress split for two subsurface injection scenarios. All these schemes were implemented in the numerical simulator DuMu\(^{\mathrm{x}}\). This study identifies conditions of problem settings where differences due to the choice of the model approach are as important as differences in geologic features. It is shown that in particular transient and multiphase flow, effects can be causing significant deviations between non-iterative and iterative sequential schemes, which might be in the same order of magnitude as geologic uncertainty. An iterated fixed-stress split has the same numerical accuracy as a fully coupled scheme but only for a certain number of iterations which might use up the computational advantage of solving two smaller systems of equations rather than a big monolithical one.

MSC:

86A05 Hydrology, hydrography, oceanography
76S05 Flows in porous media; filtration; seepage
86A60 Geological problems

References:

[1] Ackermann, S., Beck, M., Becker, B., Class, H., Fetzer, T., Flemisch, B., Gläser, D., Grüninger, C., Heck, K., Helmig, R., Hommel, J., Kissinger, A., Koch, T., Schneider, M., Seitz, G., Weishaupt, K.: Dumux 2.11.0 (2017). 10.5281/zenodo.439488
[2] Alkämper, M.; Dedner, A.; Klöfkorn, R.; Nolte, M., The DUNE-ALUGrid Module, Arch. Numer. Softw., 4, 1, 1-28 (2016)
[3] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework, Computing, 82, 2, 103-119 (2008) · Zbl 1151.65089 · doi:10.1007/s00607-008-0003-x
[4] Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O., A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE, Computing, 82, 2, 121-138 (2008) · Zbl 1151.65088 · doi:10.1007/s00607-008-0004-9
[5] Biot, MA, General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[6] Birkholzer, JT; Zhou, Q.; Tsang, CF, Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems, Int. J. Greenh. Gas Control, 3, 2, 181-194 (2009) · doi:10.1016/j.ijggc.2008.08.002
[7] Blanco-Martin, L.; Rutqvist, J.; Birkholzer, JT, Extension of TOUGH-FLAC to the finite strain framework, Comput. Geosci., 108, 64-71 (2017) · doi:10.1016/j.cageo.2016.10.015
[8] Blatt, M., Bastian, P.: The iterative solver template library. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) Applied Parallel Computing. State of the Art in Scientific Computing, pp. 666-675. Springer, Berlin (2007)
[9] Blatt, M.; Burchardt, A.; Dedner, A.; Engwer, C.; Fahlke, J.; Flemisch, B.; Gersbacher, C.; Gräser, C.; Gruber, F.; Grüninger, C.; Kempf, D.; Klöfkorn, R.; Malkmus, T.; Müthing, S.; Nolte, M.; Piatkowski, M.; Sander, O., The distributed and unified numerics environment, Version 2.4, Arch. Numer. Softw., 4, 100, 13-29 (2016) · doi:10.11588/ans.2016.100.26526
[10] Borregales, M., Kumar, K., Radu, F.A., Rodrigo, C., Gaspar, F.J.: A partially parallel-in-time fixed-stress splitting method for Biot’s consolidation model. Comput. Math. Appl. 10.1016/j.camwa.2018.09.005. http://www.sciencedirect.com/science/article/pii/S0898122118305091 (2018) · Zbl 1442.65250
[11] Both, JW; Borregales, M.; Nordbotten, JM; Kumar, K.; Radu, FA, Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025 · doi:10.1016/j.aml.2016.12.019
[12] Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl. (2018). 10.1016/j.camwa.2018.07.033 · Zbl 1442.65251
[13] BP plc: BP Statistical Review of World Energy. BP p.l.c (2018). https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
[14] Carman, PC, Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150-166 (1937)
[15] Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. Society for Industrial and Applied Mathematics. 10.1137/1.9780898718942 (2006) · Zbl 1092.76001
[16] Coussy, O.; Dangla, P.; Lassabatère, T.; Baroghel-Bouny, V., The equivalent pore pressure and the swelling and shrinkage of cement-based materials, Mater. Struct., 37, 1, 15-20 (2004) · doi:10.1007/BF02481623
[17] Darcis, M.Y.: Coupling models of different complexity for the simulation of CO_2 storage in deep saline aquifers. PhD thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, http://elib.uni-stuttgart.de/opus/volltexte/2013/8141 (2013)
[18] Fetzer, T., Becker, B., Flemisch, B., Gläser, D., Heck, K., Koch, T., Schneider, M., Scholz, S., Weishaupt, K.: Dumux 2.12.0. 10.5281/zenodo.1115500 (2017)
[19] Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; Helmig, R., DuMux: DUNE for multi-{phase,component,scale,physics,...} flow and transport in porous media, Adv. Water Resour., 34, 9, 1102-1112 (2011) · doi:10.1016/j.advwatres.2011.03.007
[20] Gaspar, F.; Rodrigo, C., On the fixed-stress split scheme as smoother in multigrid methods for coupling flow and geomechanics, Comput. Methods Appl. Mech. Eng., 326, 526-540 (2017) · Zbl 1439.74413 · doi:10.1016/j.cma.2017.08.025
[21] Golub, G.H., van Loan, C.F.: Matrix Computations, vol 3. JHU Press (2012) · Zbl 1268.65037
[22] Han, G.; Dusseault, MB, Description of fluid flow around a wellbore with stress-dependent porosity and permeability, J. Pet. Sci. Eng., 40, 1, 1-16 (2003) · doi:10.1016/S0920-4105(03)00047-0
[23] Helmig, R., Multiphase Flow and Transport Processes in the Subsurface: a Contribution to the Modeling of Hydrosystems (1997), Berlin: Springer, Berlin
[24] Ingraham, M.; Bauer, S.; Issen, K.; Dewers, T., Evolution of permeability and Biot coefficient at high mean stresses in high porosity sandstone, Int. J. Rock Mech. Min. Sci., 96, 1-10 (2017) · doi:10.1016/j.ijrmms.2017.04.004
[25] International Energy Agency (IEA): Global Energy and CO_2 Status Report. https://www.iea.org/geco (2018)
[26] Kim, J.: Sequential methods for coupled geomechanics and multiphase flow. PhD thesis, Stanford University (2010)
[27] Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits, Comput. Methods Appl. Mech. Eng., 200, 23, 2094-2116 (2011) · Zbl 1228.74106 · doi:10.1016/j.cma.2011.02.011
[28] Kim, J.; Tchelepi, H.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Eng., 200, 13, 1591-1606 (2011) · Zbl 1228.74101 · doi:10.1016/j.cma.2010.12.022
[29] Kim, J.; Moridis, G.; Yang, D.; Rutqvist, J., Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits, SPE J., 17, 2, 485-501 (2012) · doi:10.2118/141304-PA
[30] Kozeny, J., Über kapillare Leitung des Wassers im Boden. Sitzungsberichte der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse, Abteilung IIa, 136, 271-306 (1927)
[31] List, F.; Radu, FA, A study on iterative methods for solving Richards’ equation, Comput. Geosci., 20, 2, 341-353 (2016) · Zbl 1396.65143 · doi:10.1007/s10596-016-9566-3
[32] Mandel, J., Consolidation des sols (Étude mathématique), Géotechnique, 3, 7, 287-299 (1953) · doi:10.1680/geot.1953.3.7.287
[33] Mazzoldi, A.; Rinaldi, AP; Borgia, A.; Rutqvist, J., Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults, Int. J. Greenh. Gas Control, 10, 434-442 (2012) · doi:10.1016/j.ijggc.2012.07.012
[34] Mikelić, A.; Wheeler, MF, Convergence of iterative coupling for coupled flow and geomechanics, Comput. Geosci., 17, 3, 455-461 (2013) · Zbl 1392.35235 · doi:10.1007/s10596-012-9318-y
[35] Phillips, PJ; Wheeler, MF, A coupling of mixed and continuous galerkin finite element methods for poroelasticity i: the continuous in time case, Comput. Geosci., 11, 2, 131 (2007) · Zbl 1117.74015 · doi:10.1007/s10596-007-9045-y
[36] Pop, I.; Radu, F.; Knabner, P., Mixed finite elements for the richards’ equation: linearization procedure, Journal of Computational and Applied Mathematics, 168, 1, 365-373 (2004) · Zbl 1057.76034 · doi:10.1016/j.cam.2003.04.008
[37] Preisig, M.; Prévost, JH, Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria, Int. J. Greenh. Gas Control, 5, 4, 1055-1064 (2011) · doi:10.1016/j.ijggc.2010.12.006
[38] Pruess, K., Oldenburg, C., Moridis, G.: Tough2 user’s guide version 2 (1999)
[39] Rinaldi, AP; Rutqvist, J.; Cappa, F., Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection, Int. J. Greenh. Gas Control, 20, 117-131 (2014) · doi:10.1016/j.ijggc.2013.11.001
[40] Rutqvist, J.; Wu, YS; Tsang, CF; Bodvarsson, G., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, Int. J. Rock Mech. Min. Sci., 39, 4, 429-442 (2002) · doi:10.1016/S1365-1609(02)00022-9
[41] Rutqvist, J.; Rinaldi, AP; Cappa, F.; Moridis, GJ, Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., 107, 31-44 (2013) · doi:10.1016/j.petrol.2013.04.023
[42] Steeb, H.; Renner, J., Mechanics of poro-elastic media: a review with emphasis on foundational variables, Transp. Porous Med., 130, 437-461 (2019) · doi:10.1007/s11242-019-01319-6
[43] Stüben, K.: Algebraic Multigrid (AMG): an introduction with applications. GMD-Report. GMD-Forschungszentrum Informationstechnik (1999)
[44] van Genuchten, M., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils1, Soil Sci. Soc. Am. J., 44, 892-898 (1980) · doi:10.2136/sssaj1980.03615995004400050002x
[45] Walter, L.; Binning, PJ; Oladyshkin, S.; Flemisch, B.; Class, H., Brine migration resulting from CO2 injection into saline aquifers – an approach to risk estimation including various levels of uncertainty, Int. J. Greenh. Gas Control, 9, 495-506 (2012) · doi:10.1016/j.ijggc.2012.05.004
[46] White, JA; Borja, RI, Block-preconditioned newton-krylov solvers for fully coupled flow and geomechanics, Comput. Geosci., 15, 4, 647 (2011) · Zbl 1367.76034 · doi:10.1007/s10596-011-9233-7
[47] White, JA; Castelletto, N.; Tchelepi, HA, Block-partitioned solvers for coupled poromechanics: a unified framework, Comput. Methods Appl. Mech. Eng., 303, 55-74 (2016) · Zbl 1425.74497 · doi:10.1016/j.cma.2016.01.008
[48] White, JA; Castelletto, N.; Klevtsov, S.; Bui, QM; Osei-Kuffuor, D.; Tchelepi, HA, A two-stage preconditioner for multiphase poromechanics in reservoir simulation, Comput. Methods Appl. Mech. Eng., 357, 112,575 (2019) · Zbl 1442.76118 · doi:10.1016/j.cma.2019.112575
[49] Yoon, HC; Kim, J., Spatial stability for the monolithic and sequential methods with various space discretizations in poroelasticity, Int. J. Numer. Methods Eng., 114, 7, 694-718 (2018) · Zbl 07878380 · doi:10.1002/nme.5762
[50] Zhou, Q.; Birkholzer, JT; Tsang, CF; Rutqvist, J., A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations, Int. J. Greenh. Gas Control, 2, 4, 626-639 (2008) · doi:10.1016/j.ijggc.2008.02.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.