×

Numerical modelling of brittle-ductile transition with the MUFITS simulator. (English) Zbl 1439.86038

Summary: The numerical modelling of flows in geologic porous media, accounting for plastic behaviour of rocks at high temperatures and hydrofracturing at high fluid pressures, is required for a better understanding of hydrothermal and volcanic systems. The investigation of these systems is limited given the lack of reliable and available reservoir simulation software that accounts for complicated rock behaviour at elevated temperatures. In this paper, we present such software as an extension of the MUFITS reservoir simulator. We describe the mathematical model utilised for modelling the permeability changes of elastic and plastic rocks and input data formats to the simulator. We present several application examples related to the modelling of brittle-ductile transition in hydrothermal systems, in particular perturbed with the emplaced degassing magma body, and provide the corresponding simulator input data to facilitate and ease its further usage.

MSC:

86A60 Geological problems
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

Software:

MRST; TOUGH; Code_Bright
Full Text: DOI

References:

[1] Afanasyev, AA, Multiphase compositional modelling of CO2 injection under subcritical conditions: the impact of dissolution and phase transitions between liquid and gaseous CO2 on reservoir temperature, Int. J. Greenhouse Gas Control., 19, 731-742 (2013) · doi:10.1016/j.ijggc.2013.01.042
[2] Afanasyev, A.; Melnik, O.; Poritt, L.; Schumacher, J.; Sparks, SJ, Hydrothermal alteration of kimberlite by convective flows of external water, Contrib. Mineral. Petrol., 168, 1038 (2014) · doi:10.1007/s00410-014-1038-y
[3] Afanasyev, AA, Hydrodynamic modelling of petroleum reservoirs using simulator MUFITS, Energy Proc., 76, 427-435 (2015) · doi:10.1016/j.egypro.2015.07.861
[4] Afanasyev, A.; Costa, A.; Chiodini, G., Investigation of hydrothermal activity at Campi Flegrei caldera using 3D numerical simulations: extension to high temperature processes, J. Volcanol. Geotherm. Res., 299, 68-77 (2015) · doi:10.1016/j.jvolgeores.2015.04.004
[5] Afanasyev, A.; Kempka, T.; Kühn, M.; Melnik, O., Validation of the MUFITS reservoir simulator against standard CO2 storage benchmarks and history-matched models of the Ketzin pilot site, Energy Proc., 97, 395-402 (2016) · doi:10.1016/j.egypro.2016.10.032
[6] Afanasyev, A.; Blundy, J.; Melnik, O.; Sparks, S., Formation of magmatic brine lenses via focused fluid-flow beneath volcanoes, Earth Planet Sci. Lett., 486, 119-128 (2018) · doi:10.1016/j.epsl.2018.01.013
[7] Aziz, K.; Settari, A., Petroleum Reservoir Simulation (1979), New York: Appl Sci Publ., New York
[8] Brownell, DH; Garg, SK; Pritchett, JW, Governing equations for geothermal reservoirs, Water Resour. Res., 13, 6, 929-934 (1977) · doi:10.1029/WR013i006p00929
[9] Chiodini, G.; Paonita, A.; Aiuppa, A.; Costa, A.; Caliro, S.; De Martino, P.; Acocella, V.; Vandemeulebrouck, J., Magmas near the critical degassing pressure drive volcanic unrest towards a critical state, Nat. Comm., 7, 13712 (2016) · doi:10.1038/ncomms13712
[10] Coumou, D.; Matthai, S.; Geiger, S.; Driesner, T., A parallel FE-FV scheme to solve fluid flow in complex geologic media, Comput. Geosci., 34, 1697-1707 (2008) · doi:10.1016/j.cageo.2007.11.010
[11] Coussy, O., Mechanics and Physics of Porous Solids (2010), New York: John Wiley & Sons, Ltd, New York
[12] Cox, SF, The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones, Geofluids, 10, 217-233 (2010)
[13] Fanchi, JR, Principles of Applied Reservoir Simulation (2006), New York: Gulf Prof Publ., New York
[14] Forchheimer, P., Wasserbewegung durch boden, Zeit. Ver. Deutsch. Ing., 45, 1781-1788 (1901)
[15] Fournier, RO, Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal enviroment, Econ. Geol., 94, 1193-1211 (1999) · doi:10.2113/gsecongeo.94.8.1193
[16] Garg, SK; Pritchett, JW, On pressure-work, viscous dissipation and the energy balance relation for geothermal reservoirs, Adv. Water Resour., 1, 1, 41-47 (1977) · doi:10.1016/0309-1708(77)90007-0
[17] Geiger, S.; Driesner, T.; Heinrich, CA; Matthai, SK, Multiphase thermohaline convection in the Earth’s crust: I. A new finite element – finite volume solution technique combined with a new equation of state for NaCl-H2O, Transp. Porous Med., 63, 399-434 (2006) · doi:10.1007/s11242-005-0108-z
[18] Hayba, D.O., Ingebritsen, S.E.: The computer model HYDROTHERM, A three-dimensional finite-difference model to simulate ground-water flow and heat transport in the temperature range of 0 to 1,200 C: U.S. Geological Survey Water-Resources Investigations Report 94-4045, 85 p (1994)
[19] Hayba, DO; Ingebritsen, SE, Multiphase groundwater flow near cooling plutons, J. Volcanol. Geotherm. Res., 102, B6, 12235-12252 (1997)
[20] Ingebritsen, SE; Geiger, S.; Hurwitz, S.; Driesner, T., Numerical simulation of magmatic hydrothermal systems, Rev. Geophys., 48, 1, RG1002 (2010) · doi:10.1029/2009RG000287
[21] Jasim, A., Hemmings, B., Mayer, K., Scheu, B.: Groundwater flow and volcanic unrest. In: Gottsmann, J., Neuberg, J., Scheu, B (eds.) Volcanic Unrest. Advances in Volcanology. Springer, Cham (2018)
[22] Lie, K-A; Krogstad, S.; Ligaarden, IS; Natvig, JR; Nilsen, HM; Skaflestad, B., Open source MATLAB implementation of consistent discretisations on complex grids, Comput. Geosci., 16, 2, 297-322 (2012) · Zbl 1348.86002 · doi:10.1007/s10596-011-9244-4
[23] van Lingen, P., Sengul, M., Daniel, J.-M., Cosentino, L.: Single medium simulation of reservoirs with conductive faults and fractures. SPE 68165 (2001)
[24] Manning, CE; Ingebritsen, SE, Permeability of the continental crust: implications of geothermal data and metamorphic systems, Rev. Geophys., 37, 127-150 (1999) · doi:10.1029/1998RG900002
[25] McGuinness, MJ; Pruess, K.; O’Sullivan, M.; Blakeley, M., Geothermal heat pipe stability: solution selection by upstreaming and boundary conditions, Transp. Porous Med., 11, 1, 71-100 (1993) · doi:10.1007/BF00614636
[26] Olivella, S.; Gens, A.; Carrera, J.; Alonso, EE, Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media, Eng. Comput., 13, 7, 87-112 (1996) · Zbl 0983.74536 · doi:10.1108/02644409610151575
[27] Parisio, F.; Vinciguerra, S.; Kolditz, O.; Nagel, T., The brittle-ductile transition in active volcanoes, Sci. Rep., 9, 143 (2019) · doi:10.1038/s41598-018-36505-x
[28] Pedroso, C.A., Correa, A.C.F.: A new model of a pressure-dependent-conductivity hydraulic fracture in a finite reservoir: constant rate production case. SPE 38976 (1997)
[29] Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s guide, version 2. Earth sciences division, lawrence berkeley national laboratory report LBNL-43134 (2012)
[30] Sillitoe, RH, Porphyry copper systems, Econ. Geol., 105, 3-41 (2012) · doi:10.2113/gsecongeo.105.1.3
[31] Streit, J.; Cox, SF, Fluid pressures at hypocenters of moderate to large earthquakes, J. Geophys. Res., 106, B2, 2235-2243 (2001) · doi:10.1029/2000JB900359
[32] Vitovtova, VM; Shmonova, VM; Zharikova, AV, The porosity trend and pore sizes of the rocks in the continental crust of the earth: evidence from experimental data on permeability, Izvestiya, Physics of the Solid Earth, 50, 5, 593-602 (2014) · doi:10.1134/S1069351314040181
[33] Wagner, W.; Pruß, A., The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, 31, 2, 387-535 (2002) · doi:10.1063/1.1461829
[34] Watanabe, N.; Numakura, T.; Sakaguchi, K.; Saishu, H.; Okamoto, A.; Ingebritsen, SE; Tsuchiya, N., Potentially exploitable supercritical geothermal resources in the ductile crust, Nat. Geosci., 10, 140-144 (2017) · doi:10.1038/ngeo2879
[35] Weis, P.; Driesner, T.; Heinrich, CA, Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes, Science, 338, 1613-1616 (2012) · doi:10.1126/science.1225009
[36] Weis, P.; Driesner, T.; Coumou, D.; Geiger, S., Hydrothermal, multi-phase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison, Geofluids, 14, 347-371 (2014) · doi:10.1111/gfl.12080
[37] Weis, P., The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems, Geofluids, 15, 350-371 (2015) · doi:10.1111/gfl.12100
[38] Zoback, MD; Townend, J.; Grollimund, B., Steady-state failure equilibrium and deformation of intraplate lithosphere, Int. Geol. Rev., 44, 5, 383-401 (2002) · doi:10.2747/0020-6814.44.5.383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.