×

Overgrowth competition, fragmentation and sex-ratio dynamics: a spatially explicit, sub-individual-based model. (English) Zbl 1442.92189

Summary: Sessile organisms that compete for access to resources by overgrowing each other may risk the local elimination of one sex or the other, as frequently happens within clumps of the dioecious liverwort Marchantia inflexa. A multi-stage, spatially implicit differential-equation model of M. inflexa growing in an isolated patch, analysed in a previous study, indicated that long-term coexistence of the sexes within such patches may be only temporary. Here we derive a spatially explicit, sub-individual-based model to reconsider this interpretation when much more ecological realism is taken into account, including the process of fragmentation. The model tracks temporally discrete growth increments in continuous space, representing growth architecture and the overgrowth process in significant geometric detail. Results remain generally consistent with the absence of long-term coexistence of the sexes in individual patches of Marchantia. Dynamics of sex-specific growth qualitatively resemble those generated by differential-equation models, suggesting that this much simpler framework may be adequate for multi-patch metapopulation models. Direct competition between fragmenting and non-fragmenting clones demonstrates the importance of fragmentation in overgrowth competition. The results emphasize the need for empirical work on mechanisms of overgrowth and for modeling and empirical studies of life history tradeoffs and sex-ratio dynamics in multi-patch systems.

MSC:

92D40 Ecology
92C80 Plant biology
Full Text: DOI

References:

[1] Airoldi, L., Effects of disturbance, life histories, and overgrowth on coexistence of algal crusts and turfs, Ecology, 81, 798-814 (2000)
[2] Amsler, C. D., Culture and field studies of Acinetospora crinita (Carmichael) Sauvageau (Ectocarpaceae, Phaeophyceae) in North Carolina, USA, Phycologia, 23, 377-382 (1984)
[3] Armstrong, R. A., Growth and regeneration of lichen thalli with the central portions artificially removed, Environ. Exp. Bot., 19, 175-178 (1979)
[4] Armstrong, R., The effect of rock surface aspect on growth, size structure and competition in the lichen Rhizocarpon geographicum, Environ. Exp. Bot., 48, 187-194 (2002)
[5] Bailey, R. H., Ecological aspects of dispersal and establishment in lichens, (Brown, D. H.; Hawksworth, D. L.; Bailey, R. H., LichenologyProgress and Problems (1975), Academic Press: Academic Press London, UK)
[6] Barnes, D. K.A.; Dick, M. H., Overgrowth competition in encrusting bryozoan assemblages of the intertidal and infralittoral zones of Alaska, Mar. Biol., 136, 813-822 (2000)
[7] Bell, A. D., Dynamic morphologya contribution to plant population ecology, (Dirzo, R.; Shanikhan, J., Perspectives on Plant Population Ecology (1984), Sinauer Associates: Sinauer Associates Sunderland, MA)
[8] Bisang, I.; Ehrlen, J., Reproductive effort and cost of sexual reproduction in female Dicranum polysetum, Bryologist, 105, 384-397 (2002)
[9] Bischler, H., 1984. Marchantia L. The New World species. Bryophytorum Biobliotheca 26.
[10] Bischler, H., Marchantia polymorpha L. s. lat. Karyotype analysis, J. Hattori Bot. Lab., 60, 105-117 (1986)
[11] Bowker, M. A.; Stark, L. R.; McLetchie, D. N.; Mishler, B. D., Sex expression, skewed sex ratios, and microhabitat distribution in the dioecious desert moss Syntrichia caninervis (Pottiaceae), Am. J. Bot., 87, 517-526 (2000)
[12] Bruno, J. F., Fragmentation in Madracis mirabilis (Duchassaing and Michelotti)how common is size-specific fragment survivorship in corals?, J. Exp. Mar. Biol. Ecol., 230, 169-181 (1998)
[13] Buss, L. W.; Jackson, J. B.C., Competitive networksnontransitive competitive relationships in cryptic coral reef environments, Am. Nat., 113, 223-234 (1979)
[14] Cain, M. L., Consequences of foraging in clonal plant species, Ecology, 75, 933-944 (1994)
[15] Cain, M. L.; Dudle, D. A.; Evans, J. P., Spatial models of foraging in clonal plant species, Am. J. Bot., 83, 76-85 (1996)
[16] (Caldwell, M. M.; Pearcy, R. W., Exploitation of Environmental Heterogeneity by Plants (1994), Academic Press, Inc.: Academic Press, Inc. San Diego, CA)
[17] Callaghan, T. V.; Svensson, B. M.; Bowman, H.; Lindley, D. K.; Carlsson, B. A., Models of clonal plant growth based on population dynamics and architecture, Oikos, 57, 257-269 (1990)
[18] Caraco, T.; Kelly, C. K., On the adaptive value of physiological integration in clonal plants, Ecology, 72, 81-93 (1991)
[19] Ceccherelli, G.; Cinelli, F., The role of vegetative fragmentation in dispersal of the invasive alga Caulerpa taxifolia in the Mediterranean, Marine Ecol. Progr. Ser., 182, 299-303 (1999)
[20] Connell, J. H., The influence of interspecific competition and other factors on the distribution of the barnacle Chthalamus stellatus, Ecology, 42, 710-723 (1961)
[21] Crowley, P.H., Davis, H.M., Ensminger, A.L., Fuselier, L.C., Jackson, J.K., McLetchie, N.M., 2005. A general model of local competition for space. J. Theor. Biol., in press.
[22] Crowley, P. H.; McLetchie, D. N., Trade-offs and spatial life-history strategies in classical metapopulations, Am. Nat., 159, 190-208 (2002)
[23] During, H. J., Clonal growth patterns among bryophytes, (van Groenendael, J.deKroon,H., Clonal Growth in Plants (1990), SPB Academic Publishing: SPB Academic Publishing The Hague, The Netherlands), 153-176
[24] Ewanchuk, P. J.; Williams, S. L., Survival and re-establishment of vegetative fragments of eelgrass (Zostera marina), Can. J. Bot., 74, 1584-1590 (1996)
[25] Fuselier, L.; McLetchie, D. N., Microhabitat and sex distribution in Marchantia inflexa, a dioicous liverwort, Bryologist, 107, 345-356 (2004)
[26] Gourbiere, F.; van Maanen, A.; Debouzie, D., Associations between three fungi on pine needles and their variation along a climatic gradient, Mycol. Res., 105, 1101-1109 (2001)
[27] Hale, M. E., The Biology of Lichens (1974), Arnold: Arnold London, UK
[28] Hanski, I., Metapopulation dynamics, Nature, 396, 41-49 (1998)
[29] Hanski, I., Metapopulation Ecology (1999), Oxford University Press: Oxford University Press Oxford, UK
[30] Harper, J. L.; Bell, A. D., The population dynamics of growth form in organisms with modular construction, (Anderson, R. M.; Turner, B. D.; Taylor, L. R., Population Dynamics (1979), Blackwell: Blackwell Oxford, UK)
[31] Hestmark, G.; Schroeter, B.; Kappen, L., Intrathalline and size-dependent patterns of activity in Lasallia pustulata and their possible consequences for competitive interactions, Funct. Ecol., 11, 318-322 (1997)
[32] Hollensen, R. H., A gemmiparous population of Marchantia polymorpha var. aquatica in Cheboygan county, Michigan, Michigan Bot., 20, 189-191 (1981)
[33] Holling, C. S., Some characteristics of simple types of predation and parasitism, Can. Entomol., 91, 385-398 (1959)
[34] Hooper, R. G.; Henry, E. C.; Kuhlenkamp, R., Phaeosiphoniella cryophila gen. et sp. nov., a third member of the Tilopteridales (Phaeophyceae), Phycologia, 27, 395-404 (1988)
[35] Hutchinson, G. E., An Introduction to Population Ecology (1978), Yale University Press: Yale University Press New Haven, CN · Zbl 0414.92026
[36] Inghe, O., Genet and ramet survivorship under different mortality regimes—a cellular automata model, J. Theor. Biol., 138, 257-270 (1989)
[37] Jarosz, J., Do antibodies and compounds produced in vitro by Xenorhabdus nematophilus minimize the secondary invasion of insect carcasses by contaminating bacteria?, Nematologica, 42, 367-377 (1996)
[38] Jarosz, J.; Kania, G., The question of whether gut microflora of the millipede Ommatoiulus sabulosus could function as a threshold to food infections, Pedobiologia, 44, 705-708 (2000)
[39] Jompa, J.; McCook, L. J., Effects of competition and herbivory on interactions between a hard coral and a brown alga, J. Exp. Mar. Biol. Ecol., 271, 25-39 (2002)
[40] Kimmerer, R. W., Reproductive ecology of Tetraphis pellucida II. Differential fitness of sexual and asexual propagules, Bryologist, 94, 284-288 (1991)
[41] Kron, P.; Stewart, S. C., Variability in the expression of a rhizome architecture model in a natural population of Iris versicolor (Iridaceae), Am. J. Bot., 81, 1128-1138 (1994)
[42] Lasker, H. R., Clonal propagation and population dynamics of a gorgonian coral, Ecology, 71, 1578-1589 (1990)
[43] Leslie, J. F.; Klein, K. K., Female fertility and mating type effects on effective population size and evolution in filamentous fungi, Genetics, 144, 557-567 (1996)
[44] Lirman, D., Competition between macroalgae and coralseffects of herbivore exclusion and increased algal biomass on coral survivorship and growth, Coral Reefs, 19, 392-399 (2001)
[45] Matlack, G. R., Exotic plant species in Mississippi, USAcritical issues in management and research, Nat. Areas J., 22, 241-247 (2002)
[46] McCook, L. J.; Jompa, J.; Diaz-Pulido, G., Competition between corals and algae on coral reefsa review of evidence and mechanisms, Coral Reefs, 19, 400-417 (2001)
[47] McLetchie, D. N., Sperm limitation and genetic effects on fecundity in the dioecious liverwort Sphaerocarpos texanus, Sex. Plant Reprod., 9, 87-92 (1996)
[48] McLetchie, D. N.; Puterbaugh, M. N., Population sex ratios, sex-specific clonal traits and tradeoffs among these traits in the liverwort, Marchantia inflexa, Oikos, 90, 227-237 (2000)
[49] McLetchie, D. N.; García-Ramos, G.; Crowley, P. H., Local sex-ratio dynamicsa model for the dioecious liverwort Marchantia inflexa, Evol. Ecol., 15, 231-254 (2002)
[50] Michaelis, L.; Menten, M. L., Die Kinetik der Invertinwirkung, Biochem. Z., 49, 333-369 (1913)
[51] Newton, A. E.; Mishler, B. D., The evolutionary significance of asexual reproduction in mosses, J. Hattori Bot. Lab., 76, 127-145 (1994)
[52] Oborny, B., Criticisms on optimal foraging in plantsa review, Abstr. Bot., 15, 67-76 (1991)
[53] Oborny, B., Growth rules in clonal plants and predictability of the environmenta simulation study, J. Ecol., 76, 807-825 (1994)
[54] Oborny, B.; Kun, A., Fragmentation of cloneshow does it influence dispersal and competitive ability?, Evol. Ecol., 15, 319-346 (2002)
[55] Oborny, B.; Kun, A.; Czaran, T.; Bokros, S., The effect of clonal integration on plant competition for mosaic habitat space, Ecology, 81, 3291-3304 (2000)
[56] Outridge, P. M.; Hutchinson, T. C., Effects of cadmium on integration and resource allocation in the clonal fern Salvinia molesta, Oecologia, 84, 215-223 (1990)
[57] Parihar, N. S., Bryophyta (1956), Indian Universities Press: Indian Universities Press Allahabad, India
[58] Parker, G. A., Sexual selection and sexual conflict, (Blum, M. S.; Blum, N. A., Sexual Selection and Reproductive Competition in Insects (1979), Academic Press: Academic Press New York, NY), 123-166
[59] Ramsay, H. P.; Berrie, G. K., Sex determination in bryophytes, J. Hattori Bot. Lab., 52, 255-274 (1982)
[60] Remphrey, W. R.; Neal, B. R.; Steeves, T. A., The morphology and growth of Arctostaphylos uva-ursi (bearberry)an architectural model simulating colonizing growth, Can. J. Bot., 61, 2451-2458 (1983)
[61] Ronce, O.; Perret, F.; Olivieri, I., Landscape dynamics and evolution of colonist syndromesinteractions between reproductive effort and dispersal in a metapopulation, Evol. Ecol., 14, 233-260 (2000)
[62] Room, P. M., ‘Falling apart’ as a lifestylethe rhizome architecture and population growth of Salvinia molesta, J. Ecol., 71, 349-365 (1983)
[63] Rydgren, K.; Okland, R. H., Ultimate cost of sporophyte production in the clonal moss Hylocomium splendens, Ecology, 83, 1573-1579 (2002)
[64] Sánchez, J. A.; Lasker, H. R.; Nepomuceno, E. G.; Sánchez, J. D.; Woldenberg, M. J., Branching and self-organization in marine modular colonial organismsa model, Am. Nat., 163, E24-E39 (2004)
[65] Schuster, R. M., Volume VI. The Hepaticae and Anthocerotae of North America (1992), Field Museum of Naural History: Field Museum of Naural History Chicago, IL
[66] Stark, L. R.; Mishler, B. D.; McLetchie, D. N., The cost of realized sexual reproductionassessing patterns of reproductive allocation and sporophyte abortion in a desert moss, Am. J. Bot., 87, 1599-1608 (2000)
[67] Sutherland, W. J., The response of plants to patchy environments, (Shorrocks, B.; Swingland, I. R., Living in a Patchy Environment (1990), Oxford University Press: Oxford University Press Oxford, UK), 45-61
[68] Sutherland, W. J.; Stillman, R. A., The foraging tactics of plants, Oikos, 52, 239-244 (1988)
[69] Volterra, V., Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Mem. R. Acad. Naz. dei Lincei (ser. 6), 2, 31-113 (1926) · JFM 52.0450.06
[70] Watson, M. A., Chemically mediated interactions among juvenile mosses as possible determinants of their community structure, J. Chem. Ecol., 7, 367-376 (1981)
[71] Westneat, D. F.; Sargent, R. C., Sex and parentingthe effects of sexual conflict and parentage on parental strategies, TREE, 11, 87-91 (1996)
[72] Wolfram, S., Universality and complexity in cellular automata, Physica D, 10, 1 (1984) · Zbl 0562.68040
[73] Zakai, D.; Levy, O.; Chawick-Furman, N. E., Experimental fragmentation reduces sexual reproductive output by the reef-building coral Pocillopora damicornis, Coral Reefs, 19, 185-188 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.