×

Weighted Hardy-type operators on nonincreasing cones. (English) Zbl 1442.42041

Summary: In this paper, we obtain characterizations of the boundedness of multivariate weighted Hardy-type operators on monotone functions. We also study properties of the weight functions \(u\) on \(\mathbb{R}_+^n\) satisfying the condition \(B_p^{\vec{\phi}}\left( { \mathbb{R}_+^n} \right)\), which is an extension of the well-known conditions \(B_p\) and \({B_p}\left( { \mathbb{R}_+^n} \right)\). Finally, we give simpler characterizations of the boundedness of Hardy-type operators when the weight \(u\) admits separation of variables.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47G10 Integral operators
26D10 Inequalities involving derivatives and differential and integral operators
Full Text: DOI

References:

[1] Ariño, M. A.; Muckenhoupt, B., Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc., 320, 727-735 (1990) · Zbl 0716.42016
[2] E. Agora, “Boundedness of the Hilbert transform on weighted Lorentz spaces”, Dissertation, University of Bacerlona (2012). · Zbl 1248.42010
[3] M. J. Carro, J. A. Raposo, and J. Soria, “Recent developments in the theory of Lorentz spaces and weighted inequalities”, Mem. Amer. Math. Soc. 187 (2007). · Zbl 1126.42005
[4] Carro, M. J.; Soria, J., Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal., 112, 480-494 (1993) · Zbl 0784.46022 · doi:10.1006/jfan.1993.1042
[5] Carro, M. J.; Soria, J., Boundedness of some integral operators, Canad. J. Math., 45, 1155-1166 (1993) · Zbl 0798.42010 · doi:10.4153/CJM-1993-064-2
[6] Carro, M. J.; Soria, J., The Hardy-Littlewood maximal function and weighted Lorentz spaces, J. London Math. Soc., 55, 146-158 (1997) · Zbl 0865.42018 · doi:10.1112/S0024610796004462
[7] Kamiñska, A.; Maligranda, L., Order convexity and concavity of Lorentz spaces Λ_p,w, 0 <p< ∞, Studia Math., 160, 267-286 (2004) · Zbl 1057.46026 · doi:10.4064/sm160-3-5
[8] Kamiñska, A.; Maligranda, L., On Lorentz spaces Γ_p,w, Israel J. Math., 140, 285-318 (2004) · Zbl 1068.46019 · doi:10.1007/BF02786637
[9] Kamiñska, A.; Raynaud, Y., Isomorphic copies in the lattice E and its symmetrization E^(*) with applications to Orlicz-Lorentz spaces, J. Funct. Anal., 257, 271-331 (2009) · Zbl 1183.46030 · doi:10.1016/j.jfa.2009.02.016
[10] Sawyer, E., Boundedness of classical operators on classical Lorentz spaces, Studia Math., 96, 145-158 (1990) · Zbl 0705.42014 · doi:10.4064/sm-96-2-145-158
[11] Soria, J., Lorentz spaces of weak-type, Quart. J. Math. Oxford Ser., 49, 93-103 (1998) · Zbl 0943.42010 · doi:10.1093/qmathj/49.1.93
[12] Barza, S.; Kamiñska, A.; Persson, L. E.; Soria, J., Mixed norm and multidimensional Lorentz spaces, Positivity, 10, 539-554 (2006) · Zbl 1110.46018 · doi:10.1007/s11117-005-0004-3
[13] Arcozzi, N.; Barza, S.; Garcia-Domingo, J. L.; Soria, J., Hardy’s inequalities for monotone functions on partially ordered measure space, Proc. Roy. Soc. Edinburgh Sec. A, 136, 909-919 (2006) · Zbl 1117.26015 · doi:10.1017/S0308210500004790
[14] Barza, S.; Heinig, H.; Persson, L. E., Duality theorem over the cone of monotone functions and sequences in higher dimensions, J. Inequal. Appl., 7, 79-108 (2002) · Zbl 1014.26018
[15] Heinig, H.; Sinnamon, G., Mapping properties of integral averaging operators, Studia Math., 129, 157-177 (1998) · Zbl 0910.26008
[16] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), New York, Basel: Marcel Dekker, Inc., New York, Basel · Zbl 0724.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.