×

Event-triggered adaptive neural backstepping control for nonstrict-feedback nonlinear time-delay systems. (English) Zbl 1437.93061

Summary: This paper investigates the adaptive tracking control problem for a class of nonstrict-feedback nonlinear time-delay systems under event-triggered mechanism. The approach of neural network (NN) approximation is extended to nonstrict-feedback nonlinear systems. The adaptive NN controller is designed via backstepping technique and event-triggered mechanism. By the above techniques, the global Lipschitz condition of the unknown nonlinear function is released and the assumption of input-to-state stability (ISS) with respect to the measurement error is removed. It is shown that the proposed control scheme can guarantee all signals in closed-loop systems to be semi-global uniformly ultimately bounded (SGUUB), while the tracking error can converge to a small neighborhood of the origin. Finally, two examples are given to clarify the feasibility and effectiveness of the proposed design methodology.

MSC:

93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93B52 Feedback control
93C10 Nonlinear systems in control theory
93C43 Delay control/observation systems
93D25 Input-output approaches in control theory
Full Text: DOI

References:

[1] Hua, C.; Li, Y.; Guan, X., Finite/fixed-time stabilization for nonlinear interconnected systems with dead-zone input, IEEE Trans. Autom. Control, 62, 5, 2554-2560 (2016) · Zbl 1366.93500
[2] Ge, S.; Wang, C., Direct adaptive NN control of a class of nonlinear systems, IEEE Trans. Neural Netw., 13, 1, 214-221 (2002)
[3] Chen, B.; Jia, T.; Niu, Y., Robust fuzzy control for stochastic markovian jumping systems via sliding mode method, Int. J. General Syst., 45, 5, 604-618 (2016) · Zbl 1342.93071
[4] Wang, D.; Huang, J., Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form, IEEE Trans. Neural Netw., 16, 1, 195-202 (2005)
[5] Niu, Y.; Lam, J.; Wang, X.; Ho, D., Adaptive H_∞ control using backstepping design and neural networks, J. Dyn. Syst., Meas. Control, 127, 3, 478-485 (2005)
[6] Tong, S.; Li, Y., Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs, IEEE Trans. Fuzzy Syst., 21, 1, 134-146 (2012)
[7] Hua, C.; Zhang, L.; Guan, X., Distributed adaptive neural network output tracking of leader-following high-order stochastic nonlinear multiagent systems with unknown dead-zone input, IEEE Trans. Cybern., 47, 1, 177-185 (2015)
[8] Chen, B.; Liu, X.; Ge, S.; Lin, C., Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach, IEEE Trans. Fuzzy Syst., 20, 6, 1012-1021 (2012)
[9] Sun, Y.; Chen, B.; Lin, C.; Wang, H.; Zhou, S., Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Inf. Sci., 369, 748-764 (2016) · Zbl 1429.93188
[10] Yu, Q.; Wang, X.; Zong, G.; Zhao, X., Adaptive neural tracking control for a class of uncertain nonstrict-feedback nonlinear systems, J. Frankl. Inst., 354, 15, 6503-6519 (2017) · Zbl 1373.93184
[11] Yang, Y.; Yu, Z.; Li, S., Adaptive output feedback quantised tracking control for stochastic nonstrict-feedback nonlinear systems with input saturation, Int. J. Syst. Sci., 49, 15, 3130-3145 (2018) · Zbl 1482.93329
[12] Yi, J.; Li, J.; Li, J., Adaptive fuzzy output feedback control for nonlinear nonstrict-feedback time-delay systems with full state constraints, Int. J. Fuzzy Syst., 20, 6, 1730-1744 (2018)
[13] Yoo, S., Approximation-based adaptive tracking of a class of uncertain nonlinear time-delay systems in nonstrict-feedback form, Int. J. Syst. Sci., 48, 7, 1347-1355 (2017) · Zbl 1362.93079
[14] Shi, X.; Xu, S.; Chen, W.; Li, Y.; Zhang, Z., Adaptive neural control of switched nonstrict-feedback nonlinear systems with multiple time-varying delays, J. Frankl. Inst., 354, 18, 8180-8199 (2017) · Zbl 1380.93151
[15] Hua, C.; Li, K.; Guan, X., Semi-global/global output consensus for nonlinear multiagent systems with time delays, Automatica, 103, 480-489 (2019) · Zbl 1415.93018
[16] Hua, C.; Liu, G.; Li, L.; Guan, X., Adaptive fuzzy prescribed performance control for nonlinear switched time-delay systems with unmodeled dynamics, IEEE Trans. Fuzzy Syst., 26, 4, 1934-1945 (2017)
[17] Yan, H.; Tian, Y.; Li, H.; Zhang, H.; Li, Z., Input-output finite-time mean square stabilization of nonlinear semi-markovian jump systems, Automatica, 104, 82-89 (2019) · Zbl 1415.93286
[18] Tabuada, P., Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Autom. Control, 52, 9, 1680-1685 (2007) · Zbl 1366.90104
[19] Wang, X.; Lemmon, M., On event design in event-triggered feedback systems, Automatica, 47, 10, 2319-2322 (2011) · Zbl 1228.93080
[20] Zhao, H.; Niu, Y.; Zhao, J., Event-triggered sliding mode control of uncertain switched systems under denial-of-service attacks, J. Frankl. Inst. (2019) · Zbl 1427.93050
[21] Song, J.; Niu, Y., Dynamic event-triggered sliding mode control: dealing with slow sampling singularly perturbed systems, IEEE Trans. Circuits Syst. II: Express (2019)
[22] Cao, L.; Li, H.; Dong, G.; Lu, R., Event-triggered control for multi-agent systems with sensor faults and input saturation, IEEE Trans. Syst., Man Cybern.: Syst. (2019)
[23] Song, J.; Niu, Y.; Xu, J., An event-triggered approach to sliding mode control of markovian jump lur’e systems under hidden mode detections, IEEE Trans. Syst., Man, Cybern.: Syst. (2018)
[24] Yang, R.; Zhang, H.; Feng, G.; Yan, H.; Wang, Z., Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control, Automatica, 102, 129-136 (2019) · Zbl 1415.93100
[25] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Event-triggered adaptive control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 62, 4, 2071-2076 (2016) · Zbl 1366.93305
[26] Xing, L.; Wen, C.; Liu, Z.; Su, H.; Cai, J., Event-triggered output feedback control for a class of uncertain nonlinear systems, IEEE Trans. Autom. Control, 64, 1, 290-297 (2018) · Zbl 1423.93341
[27] Lu, K.; Liu, Z.; Lai, G.; Chen, C.; Zhang, Y., Adaptive fuzzy output feedback control for nonlinear systems based on event-triggered mechanism, Inf. Sci., 486, 419-433 (2019) · Zbl 1454.93165
[28] Su, X.; Liu, Z.; Lai, G.; Zhang, Y.; Chen, C., Event-triggered adaptive fuzzy control for uncertain strict-feedback nonlinear systems with guaranteed transient performance, IEEE Trans. Fuzzy Syst. (2019)
[29] Zhang, C.; Yang, G., Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures, IEEE Trans. Cybern. (2018)
[30] Cao, L.; Zhou, Q.; Dong, G.; Li, H., Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures, IEEE Trans. Syst., Man, Cybern.: Syst. (2019)
[31] Xu, Y.; Zhou, Q.; Li, T.; Liang, H., Event-triggered neural control for non-strict-feedback systems with actuator failures, IET Control Theory Appl., 13, 2, 171-182 (2019) · Zbl 1434.93043
[32] Polycarpou, M., Stable adaptive neural control scheme for nonlinear systems, IEEE Trans. Autom. Control, 41, 3, 447-451 (1996) · Zbl 0846.93060
[33] Chen, B.; Liu, X.; Liu, K.; Shi, P.; Lin, C., Direct adaptive fuzzy control for nonlinear systems with time-varying delays, Inf. Sci., 180, 5, 776-792 (2010) · Zbl 1182.93074
[34] Yu, Z.; Du, H., Adaptive neural control for uncertain stochastic nonlinear strict-feedback systems with time-varying delays: a razumikhin functional method, Neurocomputing, 74, 12-13, 2072-2082 (2011)
[35] Ning, C.; He, Y.; Wu, M.; She, J., Improved razumikhin-type theorem for input-to-state stability of nonlinear time-delay system, IEEE Trans. Autom. Control, 59, 7, 1983-1988 (2014) · Zbl 1360.93634
[36] Ning, C.; He, Y.; Wu, M.; Liu, Q.; She, J., Input-to-state stability of nonlinear systems based on an indefinite lyapunov function, Syst. Control Lett., 61, 12, 1254-1259 (2012) · Zbl 1255.93127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.