×

Quadrotor waypoint-tracking control under exogenous disturbances based on equivalent-input-disturbance approach. (English) Zbl 1437.93088

Summary: An equivalent-input-disturbance (EID)-based control scheme combining with proportional-integral-derivative (PID) controllers is presented for quadrotor waypoint-tracking control and disturbance suppression. Four EID estimators are applied to suppress exogenous disturbances. Two PI controllers and two PD controllers are applied to accomplish tracking control. The exact linearization expends the stable region of the EID-based control system. This system is globally uniformly ultimately bounded. Simulations and comparisons demonstrate the effectiveness of the method.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B35 Sensitivity (robustness)
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
Full Text: DOI

References:

[1] Kendoul, F., Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems, J. Field Robot., 29, 2, 315-378 (2012)
[2] Kendoul, F.; Yu, Z.; Nonami, K., Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles, J. Field Robot., 27, 3, 311-334 (2010)
[3] Xu, Z.; Nian, X.; Wang, H.; Chen, Y., Robust guaranteed cost tracking control of quadrotor UAV with uncertainties, ISA Trans., 69, 157-165 (2017)
[4] Quan, Q.; Du, G. X.; Cai, K. Y., Proportional-integral stabilizing control of a class of MIMO systems subject to nonparametric uncertainties by additive-state-decomposition dynamic inversion design, IEEE/ASME Trans. Mechatron., 21, 2, 1092-1101 (2016)
[5] Cao, N.; Lynch, A., Inner-outer loop control for quadrotor UAVs with input and state constraints, IEEE Trans. Control Syst. Technol., 24, 5, 1797-1804 (2016)
[6] Wu, J.; Peng, H.; Chen, Q.; Peng, X., Modeling and control approach to a distinctive quadrotor helicopter, ISA Trans., 53, 1, 173-185 (2014)
[7] Liu, Y.; Ma, J.; Tu, H., Robust command filtered adaptive backstepping control for a quadrotor aircraft, J. Control Sci. Eng. (2018) · Zbl 1403.93116
[8] Liu, Y.; Li, X.; Wang, T.; Zhang, Y.; Mei, P., Quantitative stability of quadrotor unmanned aerial vehicles, Nonlinear Dyn., 87, 3, 1819-1833 (2017)
[9] Parwana, H.; Patrikar, J.; Kothari, M., A novel fully quaternion based nonlinear attitude and position controller, Proceedings of the AIAA Guidance, Navigation, and Control Conference, 1587 (2018)
[10] Li, S. S.; Wang, Y. N.; Tan, J. H., Adaptive and robust control of quadrotor aircrafts with input saturation, Nonlinear Dyn., 89, 1, 255-265 (2017) · Zbl 1374.93250
[11] Mokhtari, M. R.; Braham, A. C.; Cherki, B., Extended state observer based control for coaxial-rotor UAV, ISA Trans., 61, 1-14 (2016)
[12] Mofid, O.; Mobayen, S., Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties, ISA Trans., 72, 1-14 (2018)
[13] Xiao, B.; Yin, S., A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles, IEEE Trans. Ind. Inform., 13, 6, 2922-2932 (2017)
[14] Mu, C.; Zhang, Y., Learing-based robust tracking control of quadrotor with time-varying and coupling uncertainties, IEEE Trans Neural Netw. Learn. Syst (2019)
[15] Chen, F.; Lu, F.; Jiang, B.; Tao, G., Adaptive compensation control of the quadrotor helicopter using quantum information technology and disturbance observer, J. Frankl. Inst., 351, 2014, 442-455 (2014) · Zbl 1293.93238
[16] Tian, B.; Liu, L.; Lu, H.; Zou, Z.; Zong, Q.; Zhang, Y., Multivariable finite time attitude control for quadrotor UAV: theory and experimentation, IEEE Trans. Ind. Inform., 65, 3, 2567-2577 (2018)
[17] Perozzi, G.; Efimov, D.; Biannic, J.; Planckaert, L., Trajectory tracking for a quadrotor under wind perturbations: sliding mode control with state-dependent gains, J. Frankl. Inst., 355, 12, 4809-4838 (2018) · Zbl 1395.93157
[18] She, J. H.; Fang, M. X.; Ohyama, Y.; Hashimoto, H.; Wu, M., Improving disturbance-rejection performance based on an equivalent-input-disturbance approach, IEEE Trans. Ind. Electron., 55, 1, 380-389 (2008)
[19] She, J. H.; Xin, X.; Pan, Y., Equivalent-input-disturbance approach analysis and application to disturbance rejection in dual-stage feed drive control system, IEEE/ASME Trans. Mechatron., 16, 2, 330-340 (2011)
[20] She, J. H.; Zhang, A. C.; Lai, X. Z.; Wu, M., Global stabilization of 2-DOF underactuated mechanical systems-an equivalent-input-disturbance approach, Nonlinear Dyn., 69, 1-2, 495-509 (2012)
[21] Liu, R. J.; She, J. H.; Wu, M.; Zhu, F.; Nie, Z., Robust disturbance rejection for a fractional-order system based on equivalent-input-disturbance approach, Sci. China Inf. Sci., 61, 7, 70222 (2018)
[22] Cai, W. J.; Wu, M.; She, J. H.; Chen, L. F., Compensation for input nonlinearities in repetitive control systems based on improved equivalent-input-disturbance approach, J. Adv. Comput. Intell. Intell. Informat., 20, 1, 146-154 (2016)
[23] Chen, X.; Cai, W. J.; Wu, M.; Cao, W. H., A new approach for periodic disturbance rejection in input-time-delay systems, Trans. Inst. Meas. Control, 40, 8, 2589-2598 (2018)
[24] Ohishi, K.; Nakao, M.; Ohnishi, K.; Miyachi, K., Microprocessor-controlled dc motor for load-insensitive position servo system, IEEE Trans. Ind. Electron., 34, 1, 44-49 (1987)
[25] Han, J. Q., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906 (2009)
[26] Gao, F.; Wu, M.; She, J. H.; Cao, W. H., Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach, Appl. Math. Comput., 282, 244-253 (2016) · Zbl 1410.93080
[27] Yu, P.; Wu, M.; She, J. H.; Liu, K.; Nakanishi, Y., An improved equivalent-input-disturbance approach for repetitive control system with state delay and disturbance, IEEE Trans. Ind. Electron., 65, 521-531 (2018)
[28] Liu, R. J.; Nie, Z. Y.; Wu, M., Robust disturbance rejection for uncertain fractional-order systems, Appl. Math. Comput., 322, 79-88 (2018) · Zbl 1426.93193
[29] Khalil, H. K., Nonlinear Systems, 3rd ed (2002), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ, USA · Zbl 1003.34002
[30] Cai, W. J.; She, J. H.; Wu, M.; Ohyama, Y., Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach, ISA Trans. (2019)
[31] Zhou, K. M.; Mao, J. Q.; Zhong, Y. S.; Lin, Y., National Defence of Industry Press (2002)
[32] H.K. Khalil, Nonlinear Systems. 2nd edn, 1996, Upper Saddle River,Prentice-Hall. · Zbl 0892.93002
[33] E. DiBenedetto, Real Analysis (Birkhaeuser Advanced Texts Basler Lehrbuecher) · Zbl 1353.26001
[34] Skelton, R. E.; Iwasaki, T.; Grigoriadis, K. M., Taylor & Francis (1998)
[35] Ziegler, J. G.; Nichols, N. B., Optimum settings for automatic controllers, Trans. ASME, 64, 759-768 (1942)
[36] Xiong, J. J.; Zhang, G. B., Global fast dynamic terminal sliding mode control for a quadrotor UAV, ISA Trans., 66, 233-240 (2017)
[37] Zhang, Y.; Chen, Z.; Zhang, X., A novel control scheme for quadrotor UAV based upon active disturbance rejection control, Aerosp. Sci. Technol., 79, 601-609 (2018)
[38] Zhang, Z.; Wang, F.; Guo, Y., Multivariable sliding mode backstepping controller design for quadrotor UAV based on disturbance observer, Sci. China-Inf. Sci., 61, 11, 112207 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.