×

Neural network-based event-triggered fault detection of discrete-time nonlinear uncertain systems. (English) Zbl 1437.93082

Summary: This paper provides a novel neural network-based event-triggered fault detection (FD) strategy for nonlinear discrete-time systems with unknown function, unmodeled dynamics and disturbances. An FD observer is proposed in the framework of neural network (NN) approximation and event-triggered mechanism. Based on the stability analysis at the trigger instants and during the inter-event time intervals, the aperiodic NN weight update law is proposed to remain ultimately bounded of the state and weight estimation errors. The FD decision logic is proposed follows by fault detectability analysis. The scheme ensures the reduction of communication burden while maintaining FD performance. Simulation results state the validity of the method.

MSC:

93C65 Discrete event control/observation systems
93C55 Discrete-time control/observation systems
93C41 Control/observation systems with incomplete information
93B53 Observers
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Zhang, P.; Ding, S. X.; Wang, G. Z.; Zhou, D. H., A frequency domain approach to fault detection in sampled-data systems, Automatica, 39, 7, 1303-1307 (2003) · Zbl 1139.93336
[2] Li, X. B.; Zhou, K. M., A time domain approach to robust fault detection of linear time-varying systems, Automatica, 45, 1, 94-102 (2009) · Zbl 1154.93341
[3] Casavola, A.; Famularo, D.; Franze, G., A robust deconvolution scheme for fault detection and isolation of uncertain linear systems: An LMI approach, Automatica, 41, 8, 1463-1472 (2005) · Zbl 1086.93014
[4] Li, X. J.; Yang, G. H., Dynamic observer-based robust control and fault detection for linear systems, IET Control Theory Appl., 6, 17, 2657-2666 (2012)
[5] Pertew, A. M.; Marquez, H. J.; Zhao, Q., H_∞ dynamic observer design with application in fault diagnosis, Proceedings of the 44th IEEE Conference on Decision and Control, 3803-3808 (2005)
[6] Mondal, S.; Chakraborty, G.; Bhattacharyy, K., LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties, Int. J. Control Autom. Syst., 8, 2, 210-219 (2010)
[7] Edwards, C.; Spurgeon, S. K.; Patton, R. J., Sliding mode observers for fault detection and isolation, Automatica, 36, 4, 541-553 (2000) · Zbl 0968.93502
[8] Li, L. L.; Ding, S. X., Optimal detection schemes for multiplicative faults in uncertain systems with application to rolling mill processes, IEEE Trans. Control Syst. Technol. (2019)
[9] Zhou, L.; She, J.; Zhang, X. M.; Cao, Z.; Zhang, Z., Performance enhancement of repetitive-control systems and application to tracking control of chuck-workpiece systems, IEEE Trans. Indust. Electron. (2019)
[10] L. Zhou, J. She, S. Zhou, C. Li, I.J.R.N. Control, Compensation for state-dependent nonlinearity in a modified repetitive-control system, 2018, 28, 1, 213-226. · Zbl 1387.93074
[11] Xu, A. P.; Zhang, Q. H., Nonlinear system fault diagnosis based on adaptive estimation, Automatica, 40, 7, 1181-1193 (2004) · Zbl 1056.93034
[12] Ma, H. J.; Yang, G. H., Residual generation for fault detection and isolation in a class of uncertain nonlinear systems, Int. J. Control, 86, 2, 263-275 (2013) · Zbl 1278.93151
[13] Besançon, G., High-gain observation with disturbance attenuation and application to robust fault detection, Automatica, 39, 6, 1095-1102 (2003) · Zbl 1035.93024
[14] R. Sharma, M. Aldeen, Fault detection in nonlinear systems with unknown inputs using sliding mode observer, 2007, Proceedings of IEEE American Control Conference, New York, USA, 432-437.
[15] Polycarpou, M. M.; Trunov, A. B., Learning approach to nonlinear fault diagnosis: Detectability analysis, IEEE Trans. Autom. Control, 45, 4, 806-812 (2000) · Zbl 0972.93007
[16] Zhang, X. D.; Polycarpou, M. M.; Parisini, T., Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation, Automatica, 46, 2, 290-299 (2010) · Zbl 1205.93066
[17] Selmic, R. R.; Polycarpou, M. M.; Parisini, T., Actuator fault detection in nonlinear uncertain systems using neural on-line approximation models, European J. Control, 15, 1, 29-44 (2009) · Zbl 1298.93184
[18] Talebi, H. A.; Khorasani, K.; Tafazoli, S., A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite’s attitude control subsystem, IEEE Trans. Neural Netw., 20, 1, 45-60 (2008)
[19] Talebi, H. A.; Khorasani, K., A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems, IEEE Trans. Control Syst. Technol., 21, 3, 842-851 (2012)
[20] Liu, C. S.; Zhang, S. J.; Hu, S. S., Adaptive neural-networks-based fault detection and diagnosis using unmeasured states, IET Control Theory Appl., 2, 12, 1066-1076 (2008)
[21] Shahriari-kahkeshi, M.; Sheikholeslam, F., Adaptive fuzzy wavelet network for robust fault detection and diagnosis in non-linear systems, IET Control Theory Appl., 8, 15, 1487-1498 (2014)
[22] Hu, S. L.; Yue, D., Event-triggered control design of linear networked systems with quantizations, ISA Trans., 51, 1, 153-162 (2012)
[23] Peng, C.; Han, Q. L., A novel event-triggered transmission scheme and control co-design for sampled-data control systems, IEEE Trans. Autom. Control, 58, 10, 2620-2626 (2013) · Zbl 1369.93365
[24] Mahmoud, M. S.; Sabih, M.; Elshafei, M., Event-triggered output feedback control for distributed networked systems, ISA Trans., 60, 294-302 (2016)
[25] Li, Z.; Yuan, X.; Wang, Y.; Xie, C. H., Subspace predictive control with the data-driven event-triggered law for linear time-invariant systems, J. Frankl. Inst., 356, 15, 8167-8181 (2019) · Zbl 1423.93116
[26] Wang, L. Q.; Dong, J. X.; Xi, C. J., Event-triggered adaptive consensus for fuzzy output-constrained multi-agent systems with observers, J. Frankl. Inst. (2019)
[27] Gu, Z.; Shi, P.; Yue, D.; Ding, Z., Decentralized adaptive event-triggered h-infinity filtering for a class of networked nonlinear interconnected systems, IEEE Trans. Cybern., 49, 5, 1570-1579 (2018)
[28] Sahoo, A.; Xu, H.; Jagannathan, S., Adaptive neural network-based event-triggered control of single-input single-output nonlinear discrete-time systems, IEEE Trans. Neural Netw., 27, 1, 151-164 (2015)
[29] Gu, Z.; Zhang, T.; Yang, F.; Zhao, H.; Shen, M. Q., A novel event-triggered mechanism for networked cascade control system with stochastic nonlinearities and actuator failures, J. Frankl. Inst., 356, 4, 1955-1974 (2019) · Zbl 1409.93046
[30] Fan, Q. Y.; Yang, G. H., Event-based fuzzy adaptive fault-tolerant control for a class of nonlinear systems, IEEE Trans. Fuzzy Syst., 26, 5, 2686-2698 (2018)
[31] Wang, H. M.; Yang, G. H., Decentralized event-triggered h_∞ control for affine fuzzy large-scale systems, IEEE Trans. Fuzzy Syst. (2019)
[32] Hajshirmohamadi, S.; Davoodi, M.; Meskin, N.; Sheikholeslam, F., Event-triggered fault detection and isolation for discrete-time linear systems, IET Control Theory Appl., 10, 5, 526-533 (2016)
[33] Zhai, D.; Lu, A. Y.; Dong, J. X.; Zhang, Q. L., Event triggered \(H_- / H_\infty\) fault detection and isolation for TS fuzzy systems with local nonlinear models, Signal Processing, 138, 244-255 (2017)
[34] Li, H.; Chen, Z.; Wu, L.; Lam, H. K.; Du, H., Event-triggered fault detection of nonlinear networked systems, IEEE Trans. Cybern., 47, 4, 1041-1052 (2016)
[35] Tan, Y.; Du, D.; Fei, S., Co-design of event generator and quantized fault detection for time-delayed networked systems with sensor saturations, J. Frankl. Inst., 354, 15, 6914-6937 (2017) · Zbl 1373.93372
[36] Zhang, Z. H.; Yang, G. H., Event-triggered fault detection for a class of discrete-time linear systems using interval observers, ISA Trans., 68, 160-169 (2017)
[37] Yang, H.; Ye, D., Distributed fixed-time consensus tracking control of uncertain nonlinear multiagent system: A prioritized strategy, IEEE Trans. Cybern. (2019)
[38] Ye, D.; Zhang, T., Summation detector for false data-injection attack in cyber-physical systems, IEEE Trans. Cybern. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.