×

On a toy network of neurons interacting through their dendrites. (English. French summary) Zbl 1434.60289

Summary: Consider a large number \(n\) of neurons, each being connected to approximately \(N\) other ones, chosen at random. When a neuron spikes, which occurs randomly at some rate depending on its electric potential, its potential is set to a minimum value \(v_{\text{min}} \), and this initiates, after a small delay, two fronts on the (linear) dendrites of all the neurons to which it is connected. Fronts move at constant speed. When two fronts (on the dendrite of the same neuron) collide, they annihilate. When a front hits the soma of a neuron, its potential is increased by a small value \(w_n\). Between jumps, the potentials of the neurons are assumed to drift in \([v_{\min },\infty )\), according to some well-posed ODE. We prove the existence and uniqueness of a heuristically derived mean-field limit of the system when \(n,N\to \infty\) with \(w_n\simeq N^{-1/2} \). We make use of some recent versions of the results of J.-D. Deuschel and O. Zeitouni [Ann. Probab. 23, No. 2, 852–878 (1995; Zbl 0834.60058)] concerning the size of the longest increasing subsequence of an i.i.d. collection of points in the plan. We also study, in a very particular case, a slightly different model where the neurons spike when their potential reach some maximum value \(v_{\text{max}} \), and find an explicit formula for the (heuristic) mean-field limit.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J74 Jump processes on discrete state spaces
92C20 Neural biology

Citations:

Zbl 0834.60058

References:

[1] D. Aldous and P. Diaconis. Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103 (1995) 199-213. · Zbl 0836.60107 · doi:10.1007/BF01204214
[2] A. L. Basdevant, L. Gerin, J. B. Gouéré and A. Singh. From Hammersley’s lines to Hammersley’s trees. Probab. Theory Related Fields 171 (2018) 1-51. · Zbl 1392.60015 · doi:10.1007/s00440-017-0772-2
[3] B. Bollobás and P. Winkler. The longest chain among random points in Euclidean space. Proc. Amer. Math. Soc. 103 (1988) 347-353. · Zbl 0655.06004
[4] M. Bossy, O. Faugeras and D. Talay. Clarification and complement to “Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons”. J. Math. Neurosci. 5 (2015) 23. · Zbl 1361.92014 · doi:10.1186/s13408-015-0031-8
[5] M. Cáceres, J. Carrillo and B. Perthame. Analysis of nonlinear noisy integrate & fire neuron models: Blow-up and steady states. J. Math. Neurosci. 1 (2011) 33. · Zbl 1259.35198
[6] J. Calder, S. Esedoḡlu and A. O. Hero. A Hamilton-Jacobi equation for the continuum limit of nondominated sorting. SIAM J. Math. Anal. 46 (2014) 603-638. · Zbl 1288.35190 · doi:10.1137/13092842X
[7] J. Carrillo, B. Perthame, D. Salort and D. Smets. Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience. Nonlinearity 28 (2015) 3365-3388. · Zbl 1336.35332 · doi:10.1088/0951-7715/28/9/3365
[8] E. Cator and P. Groeneboom. Hammersley’s process with sources and sinks. Ann. Probab. 33 (2005) 879-903. · Zbl 1066.60011 · doi:10.1214/009117905000000053
[9] J. Chevallier. Mean-field limit of generalized Hawkes processes. Stochastic Process. Appl. 127 (2017) 3870-3912. · Zbl 1374.60090 · doi:10.1016/j.spa.2017.02.012
[10] J. Chevallier, M. Cáceres, M. Doumic and P. Reynaud-Bouret. Microscopic approach of a time elapsed neural model. Math. Models Methods Appl. Sci. 25 (2015) 2669-2719. · Zbl 1325.35231 · doi:10.1142/S021820251550058X
[11] J. Chevallier, A. Duarte, E. Löcherbach and G. Ost. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Process. Appl. 129 (2019) 1-27. · Zbl 1404.60069 · doi:10.1016/j.spa.2018.02.007
[12] A. De Masi, A. Galves, E. Löcherbach and E. Presutti. Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158 (2015) 866-902. · Zbl 1315.35222 · doi:10.1007/s10955-014-1145-1
[13] F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré. Global solvability of a networked integrate-and-fire model of McKean-Vlasov type. Ann. Appl. Probab. 25 (2015) 2096-2133. · Zbl 1322.60085 · doi:10.1214/14-AAP1044
[14] F. Delarue, J. Inglis, S. Rubenthaler and E. Tanré. Particle systems with a singular mean-field self-excitation. Application to neuronal networks. Stochastic Process. Appl. 125 (2015) 2451-2492. · Zbl 1328.60134 · doi:10.1016/j.spa.2015.01.007
[15] J. D. Deuschel and O. Zeitouni. Limiting curves for i.i.d. records. Ann. Probab. 23 (1995) 852-878. · Zbl 0834.60058 · doi:10.1214/aop/1176988293
[16] S. Ditlevsen and E. Löcherbach. Multi-class oscillating systems of interacting neurons. Stochastic Process. Appl. 127 (2017) 1840-1869. · Zbl 1367.92024 · doi:10.1016/j.spa.2016.09.013
[17] N. Fournier and E. Löcherbach. On a toy model of interacting neurons. Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016) 1844-1876. · Zbl 1355.92014 · doi:10.1214/15-AIHP701
[18] T. Górski, R. Veltz, M. Galtier, H. Fragnaud, B. Telenczuk and A. Destexhe. Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity. J. Comput. Neurosci. 45 (2018) 223-234. · Zbl 1405.92044 · doi:10.1007/s10827-018-0707-7
[19] J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability 345-394. Univ. California, Berkeley, Calif., 1970/1971. Vol. I: Theory of Statistics. Univ. California Press, Berkeley, CA, 1972. · Zbl 0236.00018
[20] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500-544.
[21] J. Inglis and D. Talay. Mean-field limit of a stochastic particle system smoothly interacting through threshold hitting-times and applications to neural networks with dendritic component. SIAM J. Math. Anal. 47 (2015) 3884-3916. · Zbl 1325.60158 · doi:10.1137/140989042
[22] M. Kac. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, Vol. III (Berkeley and Los Angeles, 1956) 171-197. University of California Press. · Zbl 0072.42802
[23] E. R. Kandel. Principles of Neural Science, 5th edition. McGraw-Hill, New York, 2013.
[24] C. Koch. Biophysics of Computation: Information Processing in Single Neurons Oxford Univ. Press Paperback. Computational Neuroscience. Oxford Univ. Press, New York, 2004.
[25] B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux. Adv. Math. 26 (1977) 206-222. · Zbl 0363.62068 · doi:10.1016/0001-8708(77)90030-5
[26] E. Luçon. Quenched limits and fluctuations of the empirical measure for plane rotators in random media. Electron. J. Probab. 16 (2011) 792-829. · Zbl 1227.60113
[27] E. Luçon and W. Stannat. Mean field limit for disordered diffusions with singular interactions. Ann. Appl. Probab. 24 (2014) 1946-1993. · Zbl 1309.60096 · doi:10.1214/13-AAP968
[28] E. Luçon and W. Stannat. Transition from Gaussian to non-Gaussian fluctuations for mean-field diffusions in spatial interaction. Ann. Appl. Probab. 26 (2016) 3840-3909. · Zbl 1358.60104 · doi:10.1214/16-AAP1194
[29] H. P. McKean. Propagation of chaos for a class of non-linear parabolic equations. In Lecture Series in Differential equations 7 41-57. Catholic University, Washington, 1967.
[30] S. Méléard. Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. In Probabilistic Models for Nonlinear Partial Differential Equations 42-95. Lecture Notes in Math. 1627. Fond. CIME, Springer, Berlin, 1996. · Zbl 0864.60077
[31] S. Ostojic, N. Brunel and V. Hakim. Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. J. Comput. Neurosci. 26 (2009) 369-392. · doi:10.1007/s10827-008-0117-3
[32] K. Pakdaman, M. Thieullen and G. Wainrib. Fluid limit theorems for stochastic hybrid systems with application to neuron models. Adv. in Appl. Probab. 42 (2010) 761-794. · Zbl 1232.60019 · doi:10.1239/aap/1282924062
[33] A. Renart, N. Brunel and X.-J. Wang. Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. In Computational Neuroscience: A Comprehensive Approach 431-490. Chapman & Hall/CRC Mathematical Biology and Medicine Series, 2004.
[34] M. Riedler, M. Thieullen and G. Wainrib. Limit theorems for infinite-dimensional piecewise deterministic Markov processes. Applications to stochastic excitable membrane models. Electron. J. Probab. 17 (2012) 48. · Zbl 1255.60126 · doi:10.1214/EJP.v17-1946
[35] G. Stuart, N. Spruston and M. Häusser. Dendrites, 3rd edition. Oxford University Pres, New York, 2015.
[36] A.-S. Sznitman. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989 165-251. Lecture Notes in Math. 1464. Springer, Berlin, 1991. · Zbl 0732.60114
[37] S. M. Ulam. Monte Carlo calculations in problems of mathematical physics. In Modern mathematics for the engineer: Second series 261-281. McGraw-Hill, New York, 1961.
[38] A. M. Versik and S. V. Kerov. Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Dokl. Akad. Nauk SSSR 233 (1977) 1024-1027.
[39] I. Yakupov and M. Buzdalov. Incremental non-dominated sorting with O(N) insertion for the two-dimensional case. In IEEE Congress on Evolutionary Computation (CEC) 1853-1860, 2015.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.