×

Newtonian potential and positive solutions of Poisson equations. (English) Zbl 1436.35088

Summary: We study the properties of the well-known Newtonian potential operator including its domain, codomain, compactness, relation with the Poisson’s equation and the spectral radii of the weight Newtonian potential operators. These new properties are then applied to study the existence of positive classical solutions of nonlinear Poisson’s equations in bounded open sets, which are required neither to be connected nor smooth on their boundaries. The connectedness and smoothness are common requirements for studying the existence of classical or weak solutions of linear or nonlinear elliptic boundary value problems in the literature. Some applications to population models are provided.

MSC:

35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
47G40 Potential operators
47H10 Fixed-point theorems
92B05 General biology and biomathematics
Full Text: DOI

References:

[1] Ghergu, M.; Radulescu, V. D., Sublinear singular elliptic problems with two parameters, J. Differ. Equ., 195, 520-536 (2003) · Zbl 1039.35042
[2] Papageorgiou, N. S.; Radulescu, V. D., Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367, 12, 8723-8756 (2015) · Zbl 1341.35028
[3] Papageorgiou, N. S.; Radulescu, V. D., Multiplicity of solutions for nonlinear nonhomogeneous Robin problems, Proc. Amer. Math. Soc., 146, 2, 601-611 (2017) · Zbl 1381.35033
[4] Papageorgiou, N. S.; Radulescu, V. D.; Repovs, D. D., Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations, 59, 1, 31 (2020), Art. 9 · Zbl 1453.35069
[5] Papageorgiou, N. S.; Radulescu, V. D.; Repovs, D. D., Parametric positive solutions for superdiffusive mixed problems, Appl. Math. Lett., 77, 87-93 (2018) · Zbl 1393.35047
[6] Papageorgiou, N. S.; Radulescu, V. D.; Repovs, D. D., Positive solutions for nonlinear parametric singular Dirichlet problems, Bull. Math. Sci., 9, 3, Article 1950011 pp. (2019), 21 · Zbl 1471.35168
[7] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18, 620-709 (1976) · Zbl 0345.47044
[8] Cid, J. A.; Infante, G., A non-variational approach to the existence of nonzero positive solutions for elliptic systems, J. Fixed Point Theory Appl., 19, 3151-3162 (2017) · Zbl 1386.35077
[9] Infante, G.; Maciejewski, M.; Precup, R., A topological approach to the existence and multiplicity of positive solutions of \(( p , q )\)-Laplacian systems, Dyn. Partial Differ. Equ., 12, 193-215 (2015) · Zbl 1328.35043
[10] Lan, K. Q., Nonzero positive solutions of systems of elliptic boundary value problems, Proc. Amer. Math. Soc., 139, 4343-4349 (2011) · Zbl 1232.35054
[11] Lan, K. Q.; Lin, W., Positive solutions of elliptic boundary value problems and applications to population dynamics, J. Dynam. Differential Equations (2019), in press
[12] Lan, K. Q.; Lin, W., Systems of elliptic boundary value problems and applications to competition models, Appl. Math. Lett., 90, 86-92 (2019) · Zbl 1411.35108
[13] Lan, K. Q.; Zhang, Zhitao, Nonzero positive weak solutions of systems of p-Laplace equations, J. Math. Anal. Appl., 394, 581-591 (2012) · Zbl 1248.35083
[14] Cantrell, R. S.; Cosner, C., Diffusive logistic equations with indefinite weights: population models in disrupted environments, Proc. Roy. Soc. Edinburgh Sect. A, 112, 293-318 (1989) · Zbl 0711.92020
[15] Cantrell, R. S.; Cosner, C., The effects of spatial heterogeneity in population dynamics, J. Math. Biol., 29, 315-338 (1991) · Zbl 0722.92018
[16] Cantrell, R. S.; Cosner, C., Diffusive logistic equations with indefinite weigts: population models in disrupted environments II, SIAM J. Appl. Math., 22, 4, 1043-1064 (1991) · Zbl 0726.92024
[17] Cantrell, R. S.; Cosner, C., Effects of harvesting mediated by dispersal traits, Nat. Resour. Model., 31, 4 (2018), e12168 · Zbl 1542.91173
[18] Cantrell, R. S.; Cosner, C.; Yu, X., Dynamics of populations with individual variation in dispersal on bounded domains, J. Biol. Dyn., 12, 288-317 (2018) · Zbl 1447.92329
[19] He, X. Q.; Lam, K. Y.; Lou, Y.; Ni, W. M., Dynamics of a consumer-resource reaction-diffusion model: homogeneous versus heterogenous environments, J. Math. Biol., 78, 1605-1636 (2019) · Zbl 1415.92150
[20] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (2001), Springer: Springer Berlin, Heidelberg · Zbl 1042.35002
[21] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (2010), American Mathematical Society) · Zbl 1194.35001
[22] Lan, K. Q., Multiple positive solutions of Hammerstein integral equations with singularities, Differ. Equ. Dyn. Syst., 8, 2, 175-192 (2000) · Zbl 0977.45001
[23] Ackleh, A. S.; Salceanu, P. L., Competitive exclusion and coexistence in \(n\)-species Ricker model, J. Biol. Dyn., 9, Suppl. 1, 321-331 (2015) · Zbl 1448.92160
[24] Beverton, R. J.H.; Holt, S. J., (On the Dynamics of Exploited Fish Populations. On the Dynamics of Exploited Fish Populations, Fisheries Investigations, Series 2, vol. 19 (1957), Ministry of Agriculture, Fisheries and Food: Ministry of Agriculture, Fisheries and Food UK)
[25] Cooke, K.; van den Driessche, P.; Zou, X. F., Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol., 39, 4, 332-352 (1999) · Zbl 0945.92016
[26] Hassell, M. P., Density-dependence in single-species populations, J. Anim. Ecol., 44, 283-295 (1975)
[27] Hassell, M. P.; Comins, H. N., Discrete time models for two-species competition, Theor. Popul. Biol., 9, 202-221 (1976) · Zbl 0338.92020
[28] Ricker, W. E., Stock and recruitment, J. Fish. Res. Board Can., 11, 559-623 (1954)
[29] Zheng, C. W.; Zhang, F. Q.; Li, J. Q., Stability analysis of a population model with maturation delay and Ricker birth function, Abstr. Appl. Anal. (2014), Article ID 136707 · Zbl 1470.34138
[30] Kang, Y., Dynamics of a generalized Ricker-Beverton-Holt competition model subject to Allee effects, J. Difference Equ. Appl., 22, 5, 687-723 (2016) · Zbl 1344.92139
[31] Lutscher, F.; Iljon, T., Competition, facilitation and the Allee effect, Oikos, 122, 621-631 (2013)
[32] Lan, K. Q.; Lin, W., Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory, Discrete Contin. Dyn. Syst. Ser. B, 21, 3, 849-861 (2016) · Zbl 1333.35069
[33] Rolando, S., Multiple nonradial solutions for a nonlinear elliptic problem with singular and decaying radial potential, Adv. Nonlinear Anal., 8, 1, 885-901 (2019) · Zbl 1419.35065
[34] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press San Diego · Zbl 0661.47045
[35] Yang, G. C.; Lan, K. Q., A fixed point index theory for nowhere normal-outward compact maps and applications, J. Appl. Anal. Comput., 6, 3, 665-683 (2016) · Zbl 1463.47166
[36] Anceschi, F.; Goodrich, C. S.; Scapellato, A., Operators with Gaussian kernel bounds on mixed Morrey spaces, Filomat, 33, 16, 5219-5230 (2019) · Zbl 1499.42089
[37] Xiao, J., A trace problem for associate Morrey potentials, Adv. Nonlinear Anal., 7, 3, 407-424 (2018) · Zbl 1398.31004
[38] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Springer-Verlag Berlin Heidelberg · Zbl 1215.34001
[39] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier Science B.V.: Elsevier Science B.V. Amsterdam) · Zbl 1092.45003
[40] Lan, K. Q.; Lin, W., Multiple positive solutions of systems of Hammerstein integral equations with applications to fractional differential equations, J. Lond. Math. Soc., 83, 2, 449-469 (2011) · Zbl 1215.45004
[41] Lan, K. Q.; Lin, W., Positive solutions of systems of Caputo fractional differential equations, Commun. Appl. Anal., 17, 1, 61-86 (2013) · Zbl 1298.34014
[42] Webb, J. R.L., Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471, 692-711 (2019) · Zbl 1404.26022
[43] Webb, J. R., Initial value problems for Caputo fractional equations with singular nonlinearities, Electr. J. Differ. Equ., 117, 1-32 (2019) · Zbl 1425.34029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.