×

Exponential stability of a class of nonlinear systems via fixed point theory. (English) Zbl 1445.93019

Summary: In this paper, the problem of globally stochastically exponential stability in the \(p\) th moment for a class of T-S fuzzy stochastic impulsive genetic regulatory networks with random discrete delays, distributed delays and parameter uncertainties is discussed. By utilizing the theory of stochastic analysis, semigroup theory and fixed point theory, a novel sufficient condition to guarantee the globally stochastically exponential stability in the \(p\) th moment of the considered genetic regulatory networks is derived. Eventually, an example is given to demonstrate that the obtained result is effective.

MSC:

93C42 Fuzzy control/observation systems
35R11 Fractional partial differential equations
92C42 Systems biology, networks
34K20 Stability theory of functional-differential equations
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Abramovich, S.; Mond, B.; Pecaric, J. E., Sharpening holders inequality, J. Math. Anal. Appl., 196, 1131-1134 (1995) · Zbl 0890.26014
[2] Bai, Z. B.; Du, Z. J.; Zhang, S., Iterative method for a class of fourth-order p-Laplacian Beam equation, J. Appl. Anal. Comput., 9, 1443-1453 (2019) · Zbl 1458.34046
[3] Chen, G.; Gaans, O.; Lunel, S., Fixed points and \(p\) th moment exponential stability of stochastic delayed recurrent neural networks with impulses, Appl. Math. Lett., 27, 36-42 (2014) · Zbl 1315.34085
[4] Chen, L. L.; Gao, L.; Chen, D. Y., Fixed point theorems of mean non-expansive set-valued mappings in Banach spaces, J. Fixed Point Theory Appl., 19, 2129-2143 (2017) · Zbl 1497.47080
[5] Chen, L. L.; Gao, L.; Zhao, Y. F., A new iterative scheme for finding attractive points of \(( \alpha , \beta )\)-generalized hybrid set-valued mappings, J. Nonlinear Sci. Appl., 10, 1228-1237 (2017) · Zbl 1412.46025
[6] Chen, S.; Zhang, B. L.; Tang, X., Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9, 148-167 (2020) · Zbl 1421.35100
[7] Chen, L. L.; Zou, L.; Zhao, Y. F.; Zhang, M., Iterative approximation of common attractive points of \(( \alpha , \beta )\)-generalized hybrid set-valued mappings, J. Fixed Point Theory Appl., 21, 58 (2019) · Zbl 1475.47051
[8] Chesi, G.; Hung, Y. S., Stability analysis of uncertain genetic SUM regulatory networks, Automatica, 44, 2298-2305 (2008) · Zbl 1153.93016
[9] Cui, Y. J., Uniqueness of solution for boundary value problems for fractional dierential equations, Appl. Math. Lett., 51, 48-54 (2016) · Zbl 1329.34005
[10] Dong, H.; Guo, B.; Yin, B., Generalized fractional supertrace identity for hamiltonian structure of nlsmkdv hierarchy with self-consistent sources, Anal. Math. Phys., 6, 199-209 (2016) · Zbl 1339.37051
[11] Fact, I., Global asymptotic stability of impulsive cnns with proportional delays and partially lipschitz activation functions, Abstr. Appl. Anal., 2014, 1-11 (2014) · Zbl 1474.34510
[12] Guo, C.; O’Regan, D.; Deng, F.; Agarwal, R. P., Fixed points and exponential stability for a stochastic neutral cellular neural network, Appl. Math. Lett., 26, 849-853 (2013) · Zbl 1315.34087
[13] Huang, S., Gene expression profilling genetic networks and cellular states: an integrating concept for tumorigenesis and drug discovery, J. Mol. Med., 77, 469-480 (1999)
[14] Jia, R., Finite-time stability of a class of fuzzy cellular neural networks with multi-proportional delays, Fuzzy Sets and Systems, 319, 70-80 (2017) · Zbl 1385.34052
[15] Kao, Y.; Shi, L.; Xie, J.; Karimi, H., Global exponential stability of delayed markovian jump fuzzy cellular neural networks with generally incomplete transition probability, Neural Netw., 63, 18-30 (2015) · Zbl 1328.34078
[16] Kassay, G.; Rǎdulescu, V., Equilibrium Problems and Applications (2018), Academic Press: Academic Press Oxford · Zbl 1448.47005
[17] Li, C.; Chen, L.; Aihara, K., Stability of genetic networks with SUM regulatory logic: Lure system and LMI approach, IEEE Trans. Circuits I, 53, 2451-2458 (2006) · Zbl 1374.92045
[18] Li, X.; Ding, C.; Zhu, Q., Synchronization of stochastic perturbed chaotic neural networks with mixed delays, J. Franklin Inst., 347, 1266-1280 (2010) · Zbl 1202.93057
[19] Liu, B., Global exponential stability for bam neural networks with time-varying delays in the leakage terms, Nonlinear Anal., 14, 559-566 (2013) · Zbl 1260.34138
[20] Luo, J., Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342, 753-760 (2008) · Zbl 1157.60065
[21] Luo, J., Fixed points and stability of neutral stochastic delay differential equations, J. Math. Anal. Appl., 334, 431-440 (2008) · Zbl 1160.60020
[22] Luo, J., Fixed points and exponential stability for stochastic volterra-levin equations, J. Comput. Appl. Math., 234, 934-940 (2010) · Zbl 1197.60053
[23] Luo, J., Exponentially stable stationary solutions for delay stochastic evolution equations, Progr. Probab., 65, 169-178 (2011) · Zbl 1250.60028
[24] Luo, J.; Taniguchi, T., Fixed points and stability of stochastic neutral partial differential equations with infinite delays, Stoch. Anal. Appl., 27, 1163-1173 (2009) · Zbl 1177.93094
[25] Mingqi, X.; Rǎdulescu, V.; Zhang, B. L., Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. Partial Differential Equations, 58, 57 (2019) · Zbl 1407.35216
[26] Pan, N.; Pucci, P.; Xu, R.; Zhang, B. L., Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ., 19, 615-643 (2019) · Zbl 1423.35409
[27] Papageorgiou, N. S.; Rǎdulescu, V.; Repovš, D., (Nonlinear Analysis-Theory and Methods. Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics (2019), Springer) · Zbl 1414.46003
[28] Pu, Z.; Rao, R. F., Exponential robust stability of t-s fuzzy stochastic p-laplace pdes under zero-boundary condition, Bound. Value Probl., 2013, 264 (2013) · Zbl 1294.35202
[29] Pucci, P.; Xiang, M.; Zhang, B. L., A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian, Discrete Contin. Dyn. Syst., 37, 4035-4051 (2017) · Zbl 1360.35312
[30] Rao, R. F.; Pu, Z., Stability analysis for impulsive stochastic fuzzy p-laplace dynamic equations under neumann or dirichlet boundary condition, Bound. Value Probl., 2013, 133 (2013) · Zbl 1294.35178
[31] Rao, R. F.; Zhong, S. M., Stability analysis of impulsive stochastic reaction-diffusion cellular neural network with distributed delay via fixed point theory, Complexity, 2017, 1-9 (2017) · Zbl 1377.93169
[32] Ren, F.; Cao, J., Asymptotic and robust stability of genetic regulatory networks with time-varying delays, Neurocomputing, 71, 834-842 (2008)
[33] Sakthivel, R.; Luo, J., Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356, 1-6 (2009) · Zbl 1166.60037
[34] Song, Q.; Cao, J., Dynamical behaviors of discrete-time fuzzy cellular neural networks with variable delays and impulses, J. Franklin Inst., 345, 39-59 (2008) · Zbl 1167.93369
[35] Wang, W.; Zhong, S., Delay-dependent stability criteria for genetic regulatory networks with time-varying delays and nonlinear disturbance, Commun. Nonlinear Sci., 17, 3597-3611 (2012) · Zbl 1246.92011
[36] Xiang, M.; Zhang, B. L.; Rǎdulescu, V., Schrodinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal., 9, 690-709 (2020) · Zbl 1427.35340
[37] Zhang, W.; Fang, J.; Tang, Y., New robust stability analysis for genetic regulatory networks with random discrete delays and distributed delays, Neurocomputing, 74, 2344-2360 (2011)
[38] Zhang, W.; Fang, J.; Tang, Y., Robust stability for genetic regulatory networks with linear fractional uncertainties, Commun. Nonlinear Sci., 17, 1753-1765 (2012) · Zbl 1239.92041
[39] Zhou, L., Novel global exponential stability criteria for hybrid BAM neural networks with proportional, Neurocomputing, 161, 99-106 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.