×

Nonuniform mean-square exponential dichotomies and mean-square exponential stability. (English) Zbl 1436.60060

Summary: In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between an SDE and an ordinary differential equation (ODE) is that the first one needs an additional assumption, nonuniform Lyapunov matrix, to guarantee that the linear SDE can be transformed into a decoupled one, while the second does not. Therefore, the first main novelty of our work is that we establish some preliminary results to tackle the stochasticity. This paper is also concerned with the mean-square exponential stability of nonlinear perturbation of a linear SDE under the condition of nonuniform mean-square exponential contraction (NMS-EC). For this purpose, the concept of second-moment regularity coefficient is introduced. This concept is essential in determining the stability of the perturbed equation, and hence we deduce the lower and upper bounds of this coefficient. Our results imply that the lower and upper bounds of the second-moment regularity coefficient can be expressed solely by the drift term of the linear SDE.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
34D09 Dichotomy, trichotomy of solutions to ordinary differential equations

References:

[1] L. Arnold, Stochastic Differential Equations: Theory and Applications, New York, 1974. · Zbl 0278.60039
[2] Barreira, L.; Chu, J.; Valls, C., Robustness of nonuniform dichotomies with different growth rates, São Paulo J. Math. Sci., 5, 203-231 (2011) · Zbl 1272.34067
[3] Barreira, L.; Chu, J.; Valls, C., Lyapunov functions for general nonuniform dichotomies, Milan J. Math., 81, 153-169 (2013) · Zbl 1273.34057
[4] Barreira, L.; Pesin, Ya., (Lyapunov Exponents and Smooth Ergodic Theory. Lyapunov Exponents and Smooth Ergodic Theory, University Lecture Series, vol. 23 (2002), Amer. Math. Soc.) · Zbl 0996.37001
[5] Barreira, L.; Pesin, Ya., (Nonuniform Hyperbolicity. Nonuniform Hyperbolicity, Encycl. Math. Appl., vol. 115 (2007), Cambridge Uni-versity Press) · Zbl 1144.37002
[6] Barreira, L.; Valls, C., Stability of nonautonomous differential equations in Hilbert spaces, J. Differential Equations, 217, 204-248 (2005) · Zbl 1088.34053
[7] Barreira, L.; Valls, C., Stable manifolds for nonautonomous equations without exponential dichotomy, J. Differential Equations, 221, 58-90 (2006) · Zbl 1098.34036
[8] Barreira, L.; Valls, C., Nonuniform exponential dichotomies and Lyapunov regularity, J. Dynam. Differential Equations, 19, 215-241 (2007) · Zbl 1123.34040
[9] Barreira, L.; Valls, C., (Stability of Nonautonomous Differential Equations. Stability of Nonautonomous Differential Equations, Lect. Notes Math., vol. 1926 (2008), Springer) · Zbl 1152.34003
[10] Barreira, L.; Valls, C., Smooth robustness of parameterized perturbations of exponential dichotomies, J. Differential Equations, 249, 2021-2043 (2010) · Zbl 1204.39002
[11] Bylov, D.; Vinograd, R.; Grobman, D.; Nemyckii, V., Theory of Lyapunov Exponents and its Application to Stability Problems (1966), Nauka: Nauka Moscow · Zbl 0144.10702
[12] Chicone, C.; Latushkin, Yu., (Evolution Semigroups in Dynamical Systems and Differential Equations. Evolution Semigroups in Dynamical Systems and Differential Equations, Mathematical Surveys and Monographs, vol. 70 (1999), Amer. Math. Soc.) · Zbl 0970.47027
[13] Chow, S. N.; Leiva, H., Dynamical spectrum for time dependent linear systems in banach spaces, Jpn. J. Ind. Appl. Math., 11, 379-415 (1994) · Zbl 0818.34029
[14] Chow, S. N.; Leiva, H., Existence and roughness of the exponential dichotomy for skew-product semiflows in banach spaces, J. Differential Equations, 120, 429-477 (1995) · Zbl 0831.34067
[15] Coffman, C. V.; Schäffer, J. J., Linear differential equations with delays: admissibility and conditional exponential stability, J. Differential Equations, 9, 521-535 (1971) · Zbl 0256.34078
[16] Coppel, W. A., (Dichotomy in Stability Theory. Dichotomy in Stability Theory, Lecture Notes in Mathematics, vol. 629 (1978), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0376.34001
[17] Daleckii, J. L.; Krein, M. G., (Stability of Solutions of Differential Equations in Banach Space. Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 43 (1974), American Mathematical Society) · Zbl 0286.34094
[18] Doan, T. S.; Rasmussen, M.; Kloeden, P. E., The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor, Discrete Contin. Dyn. Syst. Ser. B, 20, 875-887 (2015) · Zbl 1366.37122
[19] Fu, M.; Liu, Z., Square-mean almost automorphic solutions for some stochastic differential equations, Proc. Amer. Math. Soc., 138, 10, 3689-3701 (2010) · Zbl 1202.60109
[20] Henry, D., (Geometric Theory of Semilinear Parabolic Equations. Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1981), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0456.35001
[21] Higham, D. J., Mean-square and asymptotic stability of the stochastic theta method, SIAM J. Numer. Anal., 38, 753-769 (2000) · Zbl 0982.60051
[22] Higham, D. J.; Mao, X.; Stuart, A. M., Exponential mean-square stability of numerical solutions to stochastic differential equations, LMS J. Comput. Math., 6, 297-313 (2003) · Zbl 1055.65009
[23] Higham, D. J.; Mao, X.; Yuan, C. G., Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equations, Numer. Math., 108, 295-325 (2007) · Zbl 1137.65007
[24] Huy, N. T., Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, J. Funct. Anal., 235, 330-354 (2006) · Zbl 1126.47060
[25] Imkeller, P.; Lederer, C., On the cohomology of flows of stochastic and random differential equations, Probab. Theory Related Fields, 120, 209-235 (2001) · Zbl 0993.60056
[26] Kloeden, P. E.; Lorenz, T., Mean-square random dynamical systems, J. Differential Equations, 253, 1422-1438 (2012) · Zbl 1267.37018
[27] Ladde, A. G.; Ladde, G. S., (An Introduction to Differential Equations. An Introduction to Differential Equations, Stochastic Modeling, Methods and Analysis, vol. 2 (2013), World Scientific Publishing Co) · Zbl 1277.34001
[28] Latushkin, Y.; Montgomery-Smith, S.; Randolph, T., Evolutionary semigroups and dichotomy of linear skew-product flows on locally compact spaces with banach fibers, J. Differential Equations, 125, 73-116 (1996) · Zbl 0881.47020
[29] Latushkin, Y.; Randolph, T.; Schnaubelt, R., Exponential dichotomy and mild solutions of nonautonomous equations in Banach spaces, J. Dynam. Differential Equations, 10, 489-510 (1998) · Zbl 0908.34045
[30] Lin, X. B., Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations, 63, 227-254 (1986) · Zbl 0589.34055
[31] Liu, Z.; Sun, K., Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 226, 1115-1149 (2014) · Zbl 1291.60121
[32] Mao, X., Exponential Stability of Stochastic Differential Equations (1994), Marcel Dekker: Marcel Dekker New York · Zbl 0806.60044
[33] Mao, X., Stochastic Differential Equations and Applications (2008), Horwood Publishing Limited: Horwood Publishing Limited Chichester
[34] Massera, J.; Schäffer, J., Linear differential equations and functional analysis, I, Ann. of Math., 67, 517-573 (1958) · Zbl 0178.17701
[35] Naulin, R.; Pinto, M., Roughness of \(( h , k )\)-dichotomies, J. Differential Equations, 118, 20-35 (1995) · Zbl 0836.34047
[36] Naulin, R.; Pinto, M., Stability of discrete dichotomies for linear difference systems, J. Difference Equations Appl., 3, 101-123 (1997) · Zbl 0884.39002
[37] Palmer, K. J., Exponential dichotomies and fredholm operators, Proc. Amer. Math. Soc., 104, 149-156 (1988) · Zbl 0675.34006
[38] Pecelli, G., Dichotomies for linear functional-differential equations, J. Differential Equations, 9, 555-579 (1971) · Zbl 0268.34073
[39] Perron, O., Die Stabilitätsfrage bei differentialgleichungen, Math. Z., 32, 703-728 (1930) · JFM 56.1040.01
[40] Preda, P.; Pogan, A.; Preda, C., On \(( a b )\)-dichotomy for evolutionary processes on a half-line, Glasg. Math. J., 46, 217-225 (2004) · Zbl 1058.34068
[41] Preda, P.; Pogan, A.; Preda, C., Schäffer spaces and exponential dichotomy for evolutionary processes, J. Differential Equations, 230, 378-391 (2006) · Zbl 1108.47041
[42] Rodrigues, H. M.; Ruas-Filho, J. G., Evolution equations: dichotomies and the Fredholm alternative for bounded solutions, J. Differential Equations, 119, 263-283 (1995) · Zbl 0837.34065
[43] Sacker, R.; Sell, G., Existence of dichotomies and invariant splitting for linear differential systems I [II, III], J. Differential Equations, 15, 429-458 (1974) · Zbl 0294.58008
[44] Sacker, R.; Sell, G., Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113, 17-67 (1994) · Zbl 0815.34049
[45] Siegmund, S., Reducibility of nonautonomous linear differential equations, J. Lond. Math. Soc., 65, 397-410 (2002) · Zbl 1091.34020
[46] Stanzhyts’kyi, O. M., Exponential dichotomy and mean square bounded solutions of linear stochastic Ito systems, Nonlinear Oscil. (N. Y.), 4, 389-398 (2001) · Zbl 1049.34069
[47] Stanzhyts’kyi, O. M.; Krenevych, A. P., Investigation of the exponential dichotomy of linear stochastic Itô systems with random initial data by means of quadratic forms, Ukr. Math. J., 58, 619-629 (2006) · Zbl 1124.60050
[48] Stoica, D., Uniform exponential dichotomy of stochastic cocycles, Stochastic Process. Appl., 120, 1920-1928 (2010) · Zbl 1201.60060
[49] Zhou, L.; Lu, K.; Zhang, W., Roughness of tempered exponential dichotomies for infinite-dimensional random difference equations, J. Differential Equations, 254, 4024-4046 (2013) · Zbl 1304.37034
[50] H. Zhu, Robustness of nonuniform mean-square exponential dichotomies, preprint. · Zbl 1372.60086
[51] Zhu, H.; Chu, J., Mean-square exponential dichotomy of numerical solutions to stochastic differential equations, J. Appl. Anal. Comput., 6, 463-478 (2016) · Zbl 1463.34235
[52] Zhu, H.; Chu, J.; Zhang, W., Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity, Discrete Contin. Dyn. Syst., 38, 4, 1935-1953 (2018) · Zbl 1431.60050
[53] Zhu, H.; Jiang, Y., Robustness of mean-square exponential dichotomies for linear stochastic equations, Electron. J. Differential Equations, 123, 1-13 (2017) · Zbl 1372.60086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.