×

Asymptotic behaviors of governing equation of gauged sigma model for Heisenberg ferromagnet. (English) Zbl 1434.35226

Summary: In this note, we study weak solutions of equation \[\Delta u = \frac{ 4 e^u}{ 1 + e^u} - 4 \pi \sum_{i = 1}^N \delta_{p_i} + 4 \pi \sum_{j = 1}^M \delta_{q_j} \quad \text{in} \mathbb{R}^2,\eqno{(0.1)}\] where \(\{ \delta_{p_i} \}_{i = 1}^N\) (resp. \(\{ \delta_{q_j} \}_{j = 1}^M\)) are Dirac masses concentrated at the points \(p_i, i = 1, \dots, N\), (resp. \(q_j\), \(j = 1, \dots, M)\) and \(N - M > 1\). Eq. (0.1) represents a governing equation of gauged sigma model for Heisenberg ferromagnet. We show that it has a sequence of solutions \(u_\beta\) having behaviors as \(- \beta \ln | x | + O (1 )\) at infinity with a free parameter \(\beta \in (2, 2 (N - M) )\), and our concern in this paper is to study the asymptotic behavior of \(b_\beta\) as \(\beta\) approaching the extremal values 2 and \(2 (N - M )\).

MSC:

35Q82 PDEs in connection with statistical mechanics
82D45 Statistical mechanics of ferroelectrics
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35B40 Asymptotic behavior of solutions to PDEs
35D30 Weak solutions to PDEs

References:

[1] Abrikosov, A., On the magnetic properties of superconductors of the second group, Sov. Phys.—JETP, 5, 1174-1182 (1957)
[2] Ao, W.; Lin, C.; Wei, J., On non-topological solutions of the \(G_2\) Chern-Simons system, Comm. Anal. Geom., 24, 717-752 (2016) · Zbl 1358.58013
[3] Belavin, A.; Polyakov, A., Metastable states of two-dimensional isotropic ferromagnets, JETP Lett., 22, 245-248 (1975)
[4] Bezryadina, A.; Eugenieva, E.; Chen, Z., Self-trapping and flipping of double-charged vortices in optically induced photonic lattices, Opt. Lett., 31, 2456-2458 (2006)
[5] Cantor, M., Elliptic operators and the decomposition of tensor fields, Bull. Amer. Math. Soc. (N.S.), 5, 235-262 (1981) · Zbl 0481.58023
[6] Chan, H.; Fu, C.; Lin, C. S., Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Comm. Math. Phys., 231, 189-221 (2002) · Zbl 1018.58008
[7] Chen, Z.; Lin, C. S., A new type of non-topological bubbling solutions to a competitive Chern-Simons model, Ann. Sc. Norm. Sci., 19, 1, 65-108 (2019) · Zbl 1417.81149
[8] Chern, J.; Yang, Z., Evaluating solutions on an elliptic problem in a gravitational gauge field theory, J. Funct. Anal., 265, 7, 1240-1263 (2013) · Zbl 1286.35236
[9] V. Ginzburg, L. Landau, On the theory of superconductivity, in: D. Ter Haar (Ed.), Collected Papers of L. Landau, Pergamon, New York, 1965.
[10] Han, J.; Huh, H., Existence of topological solutions in the Maxwell gauged \(O ( 3 )\) sigma models, J. Math. Anal. Appl., 386, 61-74 (2012) · Zbl 1229.35222
[11] Huang, K.; Tipton, R., Vortex excitations in the Weinberg-Salam theory, Phys. Rev. D, 23, 3050-3057 (1981)
[12] Jaffe, A.; Taubes, C., Vortices and Monopoles (1980), Birkhauser: Birkhauser Boston · Zbl 0457.53034
[13] Lin, F.; Yang, Y., Gauged harmonic maps Born-Infeld electromagnetism, and magnetic vortices, Comm. Pure Appl. Math., 56, 11, 1631-1665 (2003) · Zbl 1141.58304
[14] McOwen, R., The behavior of the Laplacian on weighted Sobolev spaces, Comm. Pure Appl. Math., 32, 783-795 (1979) · Zbl 0426.35029
[15] Poliakovsky, A.; Tarantello, G., On non-topological solutions for planar Liouville systems of Toda-type, Comm. Math. Phys., 347, 223-270 (2016) · Zbl 1353.35157
[16] Schroers, B., Bogomol’nyi solitons in a gauged \(O ( 3 )\) sigma model, Phys. Lett. B, 356, 291-296 (1995)
[17] Taubes, C., Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations, Comm. Math. Phys., 72, 277-292 (1980) · Zbl 0451.35101
[18] Taubes, C., On the equivalence of the first and second order equations for gauge theories, Comm. Math. Phys., 75, 207-227 (1980) · Zbl 0448.58029
[19] Vilenkin, A.; Shellard, E., Cosmic Strings and Other Topological Defects (1994), Cambridge University Press · Zbl 0978.83052
[20] Yang, Y., A necessary and sufficient condition for the existence of multisolitons in a self-dual sigma model, Comm. Math. Phys., 181, 485-506 (1996) · Zbl 0857.58045
[21] Yang, Y., Coexistence of vortices and antivortices in an Abelian gauge theory, Phys. Rev. Lett., 80, 26 (1998) · Zbl 0946.81050
[22] Yang, Y., Solitons in Field Theory and Nonlinear Analysis (2013), Springer Science & Business Media
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.