×

Transcritical bifurcation yielding global stability for network processes. (English) Zbl 1441.34070

In this paper, the dynamical system \[ \dot x(t)=f(x(t)) \tag{1} \] is considered in the unit cube \(Q=\{x\in \mathbb{R}^n: 0\le x_i\le 1, i=1,\dots,n\}\) where \(f:\mathbb{R}^n\to\mathbb{R}^n\) is a differentiable function. If \(x=0\) is a solution of system (1), the authors specify sufficient conditions of its global asymptotic stability.

MSC:

34D23 Global stability of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations

References:

[1] Amann, H., (Ordinary Differential Equations. Ordinary Differential Equations, De Gruyter Studies in Mathematics, vol. 13 (2011))
[2] Basener, W.; Brooks, B. P.; Ross, D., The Brouwer fixed point theorem applied to rumour transmission, Appl. Math. Lett., 19, 8, 841-842 (2006) · Zbl 1122.34316
[3] Boguná, M.; Castellano, C.; Pastor-Satorras, R., Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks, Phys. Rev. Lett., 111, 6, Article 068701 pp. (2013)
[4] Castellano, C.; Pastor-Satorras, R., Thresholds for epidemic spreading in networks, Phys. Rev. Lett., 105, 21, Article 218701 pp. (2010)
[5] Castillo-Chavez, C.; Song, B., Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1, 2, 361-404 (2004) · Zbl 1060.92041
[6] Ermentrout, B.; Terman, D. H., Foundations of Mathematical Neuroscience (2010), Springer: Springer Berlin · Zbl 1320.92002
[7] Ferreira, S. C.; Castellano, C.; Pastor-Satorras, R., Epidemic thresholds of the susceptible-infected-susceptible model on networks: A comparison of numerical and theoretical results, Phys. Rev. E, 86, 4, Article 041125 pp. (2012)
[8] Fu, X.; Small, M.; Chen, G., Propagation Dynamics on Complex Networks: Models, Methods and Stability Analysis (2013), Wiley: Wiley Chichester/UK
[9] Grossberg, S., Nonlinear neural networks: Principles, mechanisms, and architectures, Neural Netw., 1, 1, 17-61 (1988)
[10] Hofbauer, J.; Sigmund, K., Evolutionary Games and Population Dynamics (1998), Cambridge University Press · Zbl 0914.90287
[11] Kiss, I. Z.; Miller, J. C.; Simon, P. L., Mathematics of Epidemics on Networks; from Exact to Approximate Models (2017), Springer · Zbl 1373.92001
[12] Lajmanovich, A.; Yorke, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221-236 (1976) · Zbl 0344.92016
[13] Mallet-Paret, J., Traveling waves in spatially discrete dynamical systems of diffusive type, (Dynamical Systems (2003), Springer: Springer Berlin, Heidelberg), 231-298 · Zbl 1083.37058
[14] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 925 (2015)
[15] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63, Article 066117 pp. (2001)
[16] Porter, M.; Gleeson, J., Dynamical Systems on Networks: A Tutorial (2016), Springer · Zbl 1369.34001
[17] Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems (2008), American Mathematical Society
[18] Stehlík, P., Exponential number of stationary solutions for Nagumo equations on graphs, J. Math. Anal. Appl., 455, 2, 1749-1764 (2017) · Zbl 1432.35214
[19] Thieme, H. R., Mathematics in Population Biology (2003), Princeton University Press · Zbl 1054.92042
[20] Trappenberg, T., Fundamentals of Computational Neuroscience (2009), OUP Oxford · Zbl 1179.92012
[21] Van Mieghem, P., The N-intertwined SIS epidemic network model, Computing, 93, 147-169 (2011) · Zbl 1293.68041
[22] Van Mieghem, P.; Omic, J.; Kooij, R., Virus spread in networks, IEEE/ACM Trans. Netw., 17, 1, 1-14 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.