×

Turbulent flows as generalized Kelvin-Voigt materials: modeling and analysis. (English) Zbl 1434.76027

Summary: We perform a new modeling procedure for a 3D turbulent fluid, evolving towards a statistical equilibrium. This will result to add to the equations for the mean field \(( \mathbf{v}, p )\) the term \(- \alpha \nabla \cdot (\ell (\mathbf{x}) D \mathbf{v}_t )\), which is of the Kelvin-Voigt form, where the Prandtl mixing length \(\ell = \ell (\mathbf{x} )\) is not constant and vanishes at the solid walls. We get estimates for mean velocity \(\mathbf{v}\) in \(L_t^\infty H_x^1 \cap W_t^{1, 2} H_x^{1 / 2}\), that allow us to prove the existence and uniqueness of regular-weak solutions \(( \mathbf{v}, p )\) to the resulting system, for a given fixed eddy viscosity. We then prove a structural compactness result that highlights the robustness of the model. This allows us to consider Reynolds averaged equations and pass to the limit in the quadratic source term, in the equation for the turbulent kinetic energy \(k\). This yields the existence of a weak solution to the corresponding Navier-Stokes Turbulent Kinetic Energy system satisfied by \(( \mathbf{v}, p, k )\).

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
35Q30 Navier-Stokes equations
76F65 Direct numerical and large eddy simulation of turbulence
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids

References:

[1] Amrouche, C.; Ciarlet, P. G.; Gratie, L.; Kesavan, S., On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl. (9), 86, 2, 116-132 (2006) · Zbl 1115.35131
[2] Berselli, L. C.; Chiodaroli, E., On the energy equality for the 3D Navier-Stokes equations, Nonlinear Anal., 192, Article 111704 pp. (2020) · Zbl 1437.35526
[3] Berselli, L. C.; Iliescu, T.; Layton, W. J., Mathematics of large eddy simulation of turbulent flows, (Scientific Computation (2006), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1089.76002
[4] Berselli, L. C.; Kim, T.-Y.; Rebholz, L. G., Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization, Discrete Contin. Dyn. Syst. Ser. B, 21, 4, 1027-1050 (2016) · Zbl 1346.35157
[5] Berselli, L. C.; Lewandowski, R., On the Reynolds time-averaged equations and the long-time behavior of Leray-Hopf weak solutions, with applications to ensemble averages, Nonlinearity, 32, 4579-4608 (2019) · Zbl 1423.76089
[6] Boussinesq, J., Theorie de l’écoulement tourbillant, Mém. prés par div. savants á la Acad. Sci., 23, 46-50 (1877)
[7] Chacón-Rebollo, T.; Lewandowski, R., Mathematical and numerical foundations of turbulence models and applications, (Modeling and Simulation in Science, Engineering and Technology (2014), Springer: Springer New York) · Zbl 1328.76002
[8] Ciarlet, P. G.; Malin, M.; Mardare, C., On a vector version of a fundamental lemma of J. L. Lions, Chinese Ann. Math. Ser. B, 39, 1, 33-46 (2018) · Zbl 1398.46028
[9] Emmrich, E., Discrete Versions of Gronwall’s Lemma and their Application To the Numerical Analysis of Parabolic ProblemsTechnical report (1999), available at TU Berlin, Fachbereich Mathematik
[10] Germain, P., Mécanique des milieux continus (1962), Masson et cie: Masson et cie Éditeurs, Paris · Zbl 0121.41303
[11] Girault, V.; Raviart, P.-A., Theory and algorithms, (Finite Element Methods For Navier-Stokes Equations. Finite Element Methods For Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5 (1986), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0585.65077
[12] Gurtin, M. E., (An Introduction To Continuum Mechanics. An Introduction To Continuum Mechanics, Mathematics in Science and Engineering, vol. 158 (1981), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers] New York-London) · Zbl 0559.73001
[13] Kalantarov, V. K.; Titi, E. S., Global attractors and determining modes for the 3D Navier-Stokes-Voigt equations, Chinese Ann. Math. Ser. B, 30, 6, 697-714 (2009) · Zbl 1178.37112
[14] Larios, A.; Titi, E. S., On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models, Discrete Contin. Dyn. Syst. Ser. B, 14, 2, 603-627 (2010) · Zbl 1202.35172
[15] Layton, W.; Lewandowski, R., On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B, 6, 1, 111-128 (2006) · Zbl 1089.76028
[16] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 1, 193-248 (1934) · JFM 60.0726.05
[17] Levant, B.; Ramos, F.; Titi, E. S., On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8, 1, 277-293 (2010) · Zbl 1188.35135
[18] Lewandowski, R., The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity, Nonlinear Anal., 28, 2, 393-417 (1997) · Zbl 0863.35077
[19] Lewandowski, R., Navier-Stokes equations in the whole space with an eddy viscosity, J. Math. Anal. Appl., 478, 2, 698-742 (2019) · Zbl 1448.35367
[20] Lewandowski, R.; Pinier, B.; Memin, E.; Chandramouli, P., Testing a one-closure equation turbulence model in neutral boundary layers (2020), submitted for publication, Paper avaible at hal-01875464
[21] Lions, J.-L.; Magenes, E., Non-homogeneous Boundary Value Problems and Applications. Vol. I (1972), Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181 · Zbl 0223.35039
[22] Nečas, J.; Hlaváček, I., (Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Studies in Applied Mechanics, vol. 3 (1980), Elsevier Scientific Publishing Co.: Elsevier Scientific Publishing Co. Amsterdam-New York) · Zbl 0448.73009
[23] Obuhov, A. M., Turbulence in an atmosphere with inhomogeneous temperature, Akad. Nauk SSSR. Trudy Inst. Teoret. Geofiz., 1, 95-115 (1946) · Zbl 0063.05997
[24] Oskolkov, A. P., The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 7. Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 7, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38, 98-136 (1973)
[25] Oskolkov, A. P., On the theory of Voight fluids, Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 12. Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 12, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 96, 233-236 (1980), 310 · Zbl 0476.76016
[26] Prandtl, L., (Prandtl—Essentials of Fluid Mechanics. Prandtl—Essentials of Fluid Mechanics, Applied Mathematical Sciences, vol. 158 (2010), Springer: Springer New York), Translated from the 12th German edition by Katherine Asfaw and edited by Herbert Oertel, With contributions by P. Erhard, D. Etling, U. Müller, U. Riedel, K. R. Sreenivasan and J. Warnatz · Zbl 1183.76002
[27] Ramos, F.; Titi, E. S., Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, Discrete Contin. Dyn. Syst., 28, 1, 375-403 (2010) · Zbl 1387.35462
[28] Rong, Y.; Layton, W. J.; Zhao, H., Extension of a simplified Baldwin-Lomax model to nonequilibrium turbulence: Model, analysis and algorithms, Numer. Methods Partial Differential Equations, 5 (2019) · Zbl 1423.76271
[29] Temam, R., Theory and numerical analysis, (Navier-Stokes Equations (2001), AMS Chelsea Publishing: AMS Chelsea Publishing Providence, RI), Reprint of the 1984 edition · Zbl 0981.35001
[30] Van Driest, E. R., On turbulent flow near a wall, J. Aeronaut. Sci., 23, 11, 1007-1011 (1956) · Zbl 0073.20802
[31] Walter, W., (Ordinary Differential Equations. Ordinary Differential Equations, Graduate Texts in Mathematics, vol. 182 (1998), Springer-Verlag: Springer-Verlag New York), Translated from the sixth German (1996) edition by Russell Thompson, Readings in Mathematics · Zbl 0853.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.