×

A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. (English) Zbl 1440.74330

Summary: Topology optimization considering stress constraints has received ever-increasing attention in recent years for both of its academic challenges and great potential in real-world engineering applications. Traditionally, stress-constrained topology optimization problems are solved with approaches where structural geometry/topology is represented in an implicit way. This treatment, however, would lead to problems such as the existence of singular optima, the risk of low accuracy of stress computation, and the lack of direct link between optimized results and computer-aided design/engineering (CAD/CAE) systems. With the aim of resolving the aforementioned issues straightforwardly, a Moving Morphable Void (MMV)-based approach is proposed in the present study. Compared with existing approaches, the distinctive advantage of the proposed approach is that the structural geometry/topology is described in a completely explicit way. This feature provides the possibility of obtaining optimized designs with crisp and explicitly parameterized boundaries using much fewer numbers of degrees of freedom for finite element analysis and design variables for optimization, respectively. Several numerical examples provided demonstrate the effectiveness and advantages of the proposed approach.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[2] Guo, X.; Cheng, G. D., Recent development in structural design and optimization, Acta Mech. Sin., 26, 807-823 (2010) · Zbl 1270.74164
[3] Sigmund, O.; Maute, K., Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[4] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1-38 (2014)
[5] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Internat. J. Numer. Methods Engrg., 43, 1453-1478 (1998) · Zbl 0924.73158
[6] Cheng, G. D.; Guo, X., \( \varepsilon \)-relaxed approach in structural topology optimization, Struct. Optim., 13, 258-266 (1997)
[7] Pereira, J. T.; Fancello, E. A.; Barcellos, C. S., Topology optimization of continuum structures with material failure constraints, Struct. Multidiscip. Optim., 26, 50-66 (2004) · Zbl 1243.74157
[8] Bruggi, M., On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 125-141 (2008) · Zbl 1273.74397
[9] Bruggi, M.; Venini, P., A mixed FEM approach to stress-constrained topology optimization, Internat. J. Numer. Methods Engrg., 73, 1693-1714 (2008) · Zbl 1159.74397
[10] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Topology optimization of continuum structures with local and global stress constraints, Struct. Multidiscip. Optim., 39, 419-437 (2009) · Zbl 1274.74375
[11] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620 (2010)
[12] Holmberg, E.; Torstenfelt, B.; Klarbring, A., Stress constrained topology optimization, Struct. Multidiscip. Optim., 48, 33-47 (2013) · Zbl 1274.74341
[13] Kiyono, C. Y.; Vatanabe, S. L.; Silva, E. C.N.; Reddy, J. N., A new multi-p-norm formulation approach for stress- based topology optimization design, Compos. Struct., 156, 10-19 (2016)
[14] Allaire, G.; Jouve, F., Minimum stress optimal design with the level set method, Eng. Anal. Bound. Elem., 32, 909-918 (2008) · Zbl 1244.74104
[15] Guo, X.; Zhang, W. S.; Wang, M. Y.; Wei, P., Stress-related topology optimization via level set approach, Comput. Methods Appl. Mech. Engrg., 200, 3439-3452 (2012) · Zbl 1230.74152
[16] Zhang, W. S.; Guo, X.; Wang, M. Y.; Wei, P., Optimal topology design of continuum structures with stress concentration alleviation via level set method, Internat. J. Numer. Methods Engrg., 93, 942-959 (2013) · Zbl 1352.74255
[17] Guo, X.; Zhang, W. S.; Zhong, W. L., Stress-related topology optimization of continuum structures involving multi-phase materials, Comput. Methods Appl. Mech. Engrg., 268, 632-655 (2014) · Zbl 1295.74081
[18] Wang, M. Y.; Li, L., Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization, Struct. Multidiscip. Optim., 47, 335-352 (2013) · Zbl 1274.74410
[19] Xia, Q.; Shi, T. L.; Liu, S. Y.; Wang, M. Y., A level set solution to the stress-based structural shape and topology optimization, Comput. Struct., 90-91, 55-64 (2012)
[20] Picelli, R.; Townsend, S.; Brampton, C.; Norato, J. A.; Kim, H. A., Stress-based shape and topology optimization with the level set method, Comput. Methods Appl. Mech. Engrg., 329, 1-23 (2018) · Zbl 1439.74294
[21] Amstutz, S.; Novotny, A., Topological optimization of structures subject to von Mises stress constraints, Struct. Multidiscip. Optim., 41, 407-420 (2010) · Zbl 1274.74053
[22] Suresh, K.; Takalloozadeh, M., Stress-constrained topology optimization: a topological level-set approach, Struct. Multidiscip. Optim., 48, 295-309 (2013)
[23] Emmendoerfer, H.; Fancello, E. A., Topology optimization with local stress constraint based on level set evolution via reaction-diffusion, Comput. Methods Appl. Mech. Engrg., 305, 62-88 (2016) · Zbl 1425.74373
[24] Parvizian, J.; Düster, A.; Rank, E., Topology optimization using the finite cell method, Opt. Eng., 13, 57-78 (2012) · Zbl 1293.74357
[25] Cai, S. Y.; Zhang, W. H.; Zhu, J. H.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: a B-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[26] Cai, S. Y.; Zhang, W. H., Stress constrained topology optimization with free-form design domains, Comput. Methods Appl. Mech. Engrg., 289, 267-290 (2015) · Zbl 1423.74740
[27] Kennedy, G. J.; Hicken, J. E., Improved constraint-aggregation methods, Comput. Methods Appl. Mech. Engrg., 289, 332-354 (2015) · Zbl 1423.70058
[28] Takezawa, A.; Yoon, G. H.; Jeong, S. H.; Kobashi, M.; Kitamura, M., Structural topology optimization with strength and heat conduction constraints, Comput. Methods Appl. Mech. Engrg., 276, 341-361 (2014) · Zbl 1423.74762
[29] Yoon, G. H., Stress-based topology optimization method for steady-state fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 278, 499-523 (2014) · Zbl 1423.74775
[30] Yoon, G. H., Topology optimization for turbulent flow with Spalart-Allmaras model, Comput. Methods Appl. Mech. Engrg., 303, 288-311 (2016) · Zbl 1425.74382
[31] Guo, X.; Zhang, W. S.; Zhong, W. L., Doing topology optimization explicitly and geometrically—a new moving morphable components based framework, Trans. ASME J. Appl. Mech., 81, 081009-1-081009-12 (2014)
[32] Zhang, W. S.; Yuan, J.; Zhang, J.; Guo, X., A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53, 1243-1260 (2016)
[33] Zhang, W. S.; Zhang, J.; Guo, X., Lagrangian description based topology optimization—A revival of shape optimization, Trans. ASME J. Appl. Mech., 83, 041010-1-041010-16 (2016)
[34] Guo, X.; Zhang, W. S.; Zhang, J., Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Engrg., 310, 711-748 (2016) · Zbl 1439.74272
[35] Zhang, W. S.; Li, D.; Zhang, J.; Guo, X., Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Engrg., 311, 327-355 (2016) · Zbl 1439.74312
[36] Zhang, W. S.; Li, D.; Yuan, J.; Song, J. F.; Guo, X., A new three-dimensional topology optimization method based on moving morphable components (MMCs), Comput. Mech., 59, 647-665 (2017) · Zbl 1398.74258
[37] Zhang, W. S.; Yang, W. Y.; Zhou, J. H.; Li, D.; Guo, X., Structural topology optimization through explicit boundary evolution, ASME J. Appl. Mech., 84, 011011-1-011011-10 (2017)
[38] Guo, X.; Zhou, J. H.; Zhang, W. S.; Du, Z. L.; Liu, C.; Liu, Y., Self-supporting structure design in additive manufacturing through explicit topology optimization, Comput. Methods Appl. Mech. Engrg., 323, 27-63 (2017) · Zbl 1439.74273
[39] Zhang, W. S.; Song, J. F.; Zhou, J. H.; Du, Z. L.; Zhu, Y. C.; Sun, Z.; Guo, X., Topology optimization with multiple materials via moving morphable component (MMC) method, Internat. J. Numer. Methods Engrg. (2017)
[40] Norato, J. A.; Bell, B. K.; Tortorelli, D. A., A geometry projection method for continuum-based topology optimization with discrete elements, Comput. Methods Appl. Mech. Engrg., 293, 306-327 (2015) · Zbl 1423.74756
[41] Zhang, S. L.; Norato, J. A.; Gain, A. L., A geometry projection method for the topology optimization of plate structures, Struct. Multidiscip. Optim., 54, 1173-1190 (2016)
[42] Zhang, S. L.; Gain, A. L.; Norato, J. A., Stress-based topology optimization with discrete geometric components, Comput. Methods Appl. Mech. Engrg., 325, 1-21 (2017) · Zbl 1439.74307
[43] Zhang, S. L.; Norato, J. A., Optimal design of panel reinforcements with ribs made of plates, ASME J. Mech. Des., 139, 081403-1-081403-11 (2017)
[44] Zhang, S. L.; Gain, A. L.; Norato, J. A., A geometry projection method for the topology optimization of curved plate structures with placement bounds: Topology optimization of curved plate structures, Internat. J. Numer. Methods Engrg. (2017)
[45] Zhang, W. H.; Zhou, Y.; Zhou, J. H., A comprehensive study of feature definitions with solids and voids for topology optimization, Comput. Methods Appl. Mech. Engrg., 325, 289-313 (2017) · Zbl 1439.74310
[46] Zhang, W. H.; Zhao, L. Y.; Gao, T., CBS-based topology optimization including design-dependent body loads, Comput. Methods Appl. Mech. Engrg., 322, 1-22 (2017) · Zbl 1439.74308
[47] Hoang, V. N.; Jang, J. W., Topology optimization using moving morphable bars for versatile thickness control, Comput. Methods Appl. Mech. Engrg., 317, 153-173 (2017) · Zbl 1439.74274
[48] Hou, W. B.; Gai, Y. D.; Zhu, X. F.; Wang, X.; Zhao, C.; Xu, L. K.; Jiang, K.; Hu, P., Explicit isogeometric topology optimization using moving morphable components, Comput. Methods Appl. Mech. Engrg., 326, 694-712 (2017) · Zbl 1439.74275
[49] Takalloozadeh, M.; Yoon, G. H., Implementation of topological derivative in the moving morphable components approach, Finite Elem. Anal. Des., 134, 16-26 (2017)
[50] Sun, J. L.; Tian, Q.; Hu, H. Y., Topology optimization of a three-dimensional flexible multibody system via moving morphable components, ASME J. Comput. Nonlinear Dyn., 13, 021010-1-021010-11 (2018)
[51] Hughes, J. R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[52] Schillinger, D.; Dedè, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249-252, 116-150 (2012) · Zbl 1348.65055
[53] Seo, Y. D.; Kim, H. J.; Youn, S. K., Isogeometric topology optimization using trimmed spline surfaces, Comput. Methods Appl. Mech. Engrg., 199, 3270-3296 (2010) · Zbl 1225.74068
[54] Qian, X. P., Full analytical sensitivities in NURBS based isogeometric shape optimization, Comput. Methods Appl. Mech. Engrg., 199, 2059-2071 (2010) · Zbl 1231.74352
[55] Xia, S. T.; Qian, X. P., Isogeometric analysis with bezier tetrahedra, Comput. Methods Appl. Mech. Engrg., 316, 782-816 (2017) · Zbl 1439.65019
[56] Xia, S. T.; Wang, X. L.; Qian, X. P., Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 297, 292-324 (2015) · Zbl 1425.65188
[57] Gupta, A. K., A finite element for transition from a fine to a coarse grid, Internat. J. Numer. Methods Engrg., 12, 35-45 (1978) · Zbl 0369.73073
[58] Tabarraei, A.; Sukumar, N., Adaptive computations on conforming quadtree meshes, Finite Elem. Anal. Des., 41, 686-702 (2005)
[59] Ooi, E. T.; Man, H.; Natarajan, S.; Song, C., Adaptation of quadtree meshes in the scaled boundary finite element method for crack propagation modeling, Eng. Fract. Mech., 144, 101-117 (2015)
[60] Wei, P.; Wang, M. Y.; Xing, X. H., A study on X-FEM in continuum structural optimization using a level set model, Comput. Aided Des., 42, 708-719 (2010)
[61] Makhija, D.; Maute, K., Numerical instabilities in level set topology optimization with the extended finite element method, Struct. Multidiscip. Optim., 49, 185-197 (2014)
[62] Lang, C.; Makhija, D.; Doostan, A.; Maute, K., A simple and efficient preconditioning scheme for heaviside enriched XFEM, Comput. Mech., 54, 1357-1374 (2014) · Zbl 1311.74124
[63] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[64] Abaqus Analysis User’s Manual, https://www.abaqus.com; Abaqus Analysis User’s Manual, https://www.abaqus.com
[65] Zhang, W. S.; Chen, J. X.; Zhu, X. F.; Zhou, J. H.; Xue, D. C.; Lei, X.; Guo, X., Explicit three dimensional topology optimization via Moving Morphable Void (MMV) approach, Comput. Methods Appl. Mech. Engrg., 322, 590-614 (2017) · Zbl 1439.74311
[66] Sevilla, R.; Fernández-Méndez, S.; Huerta, A., NURBS-enhanced finite element method (NEFEM), Internat. J. Numer. Methods Engrg., 76, 56-83 (2008) · Zbl 1162.65389
[67] Parvizian, J.; Düster, A.; Rank, E., Finite cell method—h- and p-extension for embedded domain problems in solid mechanics, Comput. Mech., 41, 121-133 (2007) · Zbl 1162.74506
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.