×

Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli-Euler beam. (English) Zbl 1440.74180

Summary: The present study elucidates linear static analysis for plane beam structures using the isogeometric approach. A novel methodology for rotation-free analysis of an arbitrarily curved Bernoulli-Euler beam in the convective frame of reference is derived in detail. The full degeneration of a 3D continuum beam to a 1D line has been presented and a fully applicable isogeometric finite element has been obtained. The driving force behind developing the present research has been the derivation of the NURBS-based isogeometric analysis which will enable an elegant formulation of the plane Bernoulli-Euler beams, being a function only of the global rectangular Cartesian coordinates. The verification and accuracy of the research are obtained via a thorough comparison between theory, finite element analyses and relevant examples from literature. An excellent agreement of results is achieved and usefulness for academic and practical purposes alike are proved. The effects of the hpk-refinements are illuminated and it is observed that the convergences for the most variables and refinement techniques are not monotonic. A special attention is paid to the influence of the product of maximum curvature and thickness of beam on the accuracy of the solution. The limits of applicability of the present approach are defined for a few specific types of analyses. The derived formulation is geometrically exact and appropriate for the analysis of strongly curved Bernoulli-Euler beams.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74S05 Finite element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ibrahimbegović, A., On finite element implementation of geometrically nonlinear Reissner’s beam theory: three-dimensional curved beam elements, Comput. Methods Appl. Mech. Engrg., 122, 1-2, 11-26 (1995) · Zbl 0852.73061
[2] Dvorkin, E.; Onate, E.; Oliver, J., On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments, Internat. J. Numer. Methods Engrg., 26, 7, 1597-1613 (1988) · Zbl 0636.73059
[3] Chidamparam, P.; Leissa, A., Vibrations of planar curved beams, rings, and arches, Appl. Mech. Rev., 46, 9, 467-483 (1993)
[4] Noor, A.; Peters, J., Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams, Internat. J. Numer. Methods Engrg., 17, 4, 615-631 (1981) · Zbl 0459.73067
[5] Lin, K.; Hsieh, C., The closed form general solutions of 2-D curved laminated beams of variable curvatures, Compos. Struct., 79, 4, 606-618 (2007)
[6] Tufekci, E.; Arpaci, A., Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations, Struct. Eng. Mech., 22, 2, 131-150 (2006)
[7] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[8] Cottrell, J.; Hughes, T.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), Wiley: Wiley Chichester · Zbl 1378.65009
[9] Hughes, T., Isogeometric analysis: Progress and challenges, Comput. Methods Appl. Mech. Engrg., 316, 1 (2017) · Zbl 1439.00083
[10] Bazilevs, Y.; Beirao da Veiga, L.; Cottrell, J.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113
[11] Beirão da Veiga, L.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for h-p-k-refinement in Isogeometric Analysis, Numer. Math., 118, 2, 271-305 (2011) · Zbl 1222.41010
[12] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 374-382 (2010) · Zbl 1227.74068
[13] Bouclier, R.; Elguedj, T.; Combescure, A., Locking free isogeometric formulations of curved thick beams, Comput. Methods Appl. Mech. Engrg., 245-246, 144-162 (2012) · Zbl 1354.74260
[14] Beirao de Veiga, L.; Lovadina, C.; Reali, A., Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241-244, 38-51 (2012) · Zbl 1353.74045
[15] Reali, A.; Gomez, H., An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 284, 623-636 (2015) · Zbl 1423.74553
[16] Adam, C.; Bouabdallah, S.; Zarroug, M.; Maitournam, H., Improved numerical integration for locking treatment in isogeometric structural elements. Part I: Beams, Comput. Methods Appl. Mech. Engrg., 279, 1-28 (2014) · Zbl 1423.74450
[17] Cazzani, A.; Malagu, M.; Turco, E., Isogeometric analysis of plane-curved beams, Math. Mech. Solids, 21, 5, 562-577 (2016) · Zbl 1370.74084
[18] Cazzani, A.; Malagu, M.; Turco, E.; Stochino, F., Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math. Mech. Solids, 21, 2, 189-209 (2016) · Zbl 1333.74051
[19] Engel, G.; Garikipati, K.; Hughes, T.; Larson, M.; Mazzei, L.; Taylor, R., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191, 3669-3750 (2002) · Zbl 1086.74038
[20] Raknes, S.; Deng, X.; Bazilevs, Y.; Benson, D.; Mathisen, K.; Kvamsdal, T., Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells, Comput. Methods Appl. Mech. Engrg., 263, 127-143 (2013) · Zbl 1286.74119
[21] Maurin, F.; Dedè, L.; Spadoni, A., Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications, Nonlinear Dynam., 81, 1-2, 77-96 (2015) · Zbl 1431.74068
[22] Greco, L.; Cuomo, M.; Contrafatto, L.; Gazzo, S., An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods, Comput. Methods Appl. Mech. Engrg., 324, 476-511 (2017) · Zbl 1439.74157
[23] Nagy, A.; Abdalla, M.; Gürdal, Z., Isogeometric sizing and shape optimisation of beam structures, Comput. Methods Appl. Mech. Engrg., 199, 1216-1230 (2010) · Zbl 1227.74047
[24] Hosseini, S.; Moetakef-Imani, B.; Hadidi-Moud, S.; Hassani, B., The effect of parameterization on isogeometric analysis of free-form curved beams, Acta Mech., 227, 7, 1983-1998 (2016) · Zbl 1344.74038
[25] Greco, L.; Cuomo, M., B-Spline interpolation of Kirchhoff-Love space rods, Comput. Methods Appl. Mech. Engrg., 256, 251-269 (2013) · Zbl 1352.74153
[26] Greco, L.; Cuomo, M., An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod, Comput. Methods Appl. Mech. Engrg., 269, 173-197 (2014) · Zbl 1296.74049
[27] Bauer, A.; Breitenberger, M.; Philipp, B.; Wuchner, R.; Bletzinger, K.-U., Nonlinear isogeometric spatial Bernoulli beam, Comput. Methods Appl. Mech. Engrg., 303, 101-127 (2016) · Zbl 1425.74450
[28] Lu, J.; Zhou, X., Cylindrical element: Isogeometric model of continuum rod, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 233-241 (2011) · Zbl 1225.74098
[29] Love, A., A Treatise on Mathematical Theory of Elasticity (1906), University Press: University Press Cabridge · JFM 37.0822.01
[30] Slivker, V., (Babitsky, V.; Wittenburg, J., Foundations of Engineering Mechanics (2007), Springer) · Zbl 1107.74003
[31] G. Radenković, Isogeometric theory of structures (in Serbian), Beograd: Faculty of Architecture, 2014.; G. Radenković, Isogeometric theory of structures (in Serbian), Beograd: Faculty of Architecture, 2014.
[32] Piegl, L.; Tiller, W., The NURBS Book (1995), Springer · Zbl 0828.68118
[33] Cottrell, J.; Hughes, T.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Engrg., 196, 4160-4183 (2007) · Zbl 1173.74407
[34] Hughes, T., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0634.73056
[35] Borković, A.; Kovačević, S.; Milašinović, D.; Radenković, G.; Mijatović, O.; Golubović-Bugarski, V., Geometric nonlinear analysis of prismatic shells using the semi-analytical finite strip method, Thin-Walled Struct., 117, 63-88 (2017)
[36] Wolfram Language & System Documentation Center, Wolfram Research, 2017. [Online]. Available: reference.wolfram.com; Wolfram Language & System Documentation Center, Wolfram Research, 2017. [Online]. Available: reference.wolfram.com
[37] Hughes, T.; Reali, A.; Sangalli, G., Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 100, 5-8, 301-313 (2010) · Zbl 1227.65029
[38] Schillinger, D.; Hossain, S. J.; Hughes, T., Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1-45 (2014) · Zbl 1425.65177
[39] Timoshenko, S.; Goodier, J., Theory of Elasticity (1951), McGraw-Hill Book Company, Inc · Zbl 0045.26402
[40] K. &. S.I. Hibbitt, ABAQUS/Standard Analysis User’s Manual, 2007.; K. &. S.I. Hibbitt, ABAQUS/Standard Analysis User’s Manual, 2007.
[41] Armero, F.; Valverde, J., Invariant Hermitian finite elements for thin Kirchhoff rods. I: The linear plane case, Comput. Methods Appl. Mech. Engrg., 213-216, 427-457 (2012) · Zbl 1243.74176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.