×

On the geometry of twisted symmetries: gauging and coverings. (English) Zbl 1436.35021

Summary: We consider the theory of twisted symmetries of differential equations, in particular \(\lambda\) and \(\mu \)-symmetries, and discuss their geometrical content. We focus on their interpretation in terms of gauge transformations on the one hand, and of coverings on the other one.

MSC:

35B06 Symmetries, invariants, etc. in context of PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] Alekseevsky, D. V.; Vinogradov, A. M.; Lychagin, V. V., Basic Ideas and Concepts of Differential Geometry (1991), Springer · Zbl 0741.00027
[2] Catalano Ferraioli, D., Nonlocal aspects of \(\lambda \)-symmetries and ODEs reduction, J. Phys. A, 40, 5479-5489 (2007) · Zbl 1129.34027
[3] Catalano Ferraioli, D.; Morando, P., Local and nonlocal solvable structures in the reduction of ODEs, J. Phys. A, 42, Article 035210 pp. (2009), (15pp) · Zbl 1173.34029
[4] Ch. Nash, D.; Sen, S., Geometry and Topology for Physicists (2011), Dover
[5] Cicogna, G., Reduction of systems of first-order differential equations via \(\Lambda \)-symmetries, Phys. Lett. A, 372, 3672-3677 (2008) · Zbl 1220.34053
[6] Cicogna, G., Symmetries of Hamiltonian equations and \(\Lambda \)-constants of motion, J. Nonlinear Math. Phys., 16, 43-60 (2009) · Zbl 1362.70022
[7] Cicogna, G.; Gaeta, G., Symmetry and Perturbation Theory in Nonlinear Dynamics (1999), Springer · Zbl 0981.34025
[8] Cicogna, G.; Gaeta, G.; Morando, P., On the relation between standard and \(\mu \)-symmetries for PDEs, J. Phys. A, 37, 9467-9486 (2004) · Zbl 1063.58025
[9] Cicogna, G.; Gaeta, G.; Walcher, S., A generalization of \(\lambda \)-symmetry reduction for systems of ODEs: \( \sigma \)-symmetries, J. Phys. A, 45, Article 355205 pp. (2012), (29pp) · Zbl 1255.34034
[10] Cicogna, G.; Gaeta, G.; Walcher, S., Dynamical systems and \(\sigma \)-symmetries, J. Phys. A, 46, Article 235204 pp. (2013), (23pp) · Zbl 1301.37015
[11] Cicogna, G.; Gaeta, G.; Walcher, S., Orbital reducibility and a generalization of \(\lambda \)-symmetries, J. Lie Theory, 23, 357-381 (2013) · Zbl 1286.34056
[12] Cicogna, G.; Gaeta, G.; Walcher, S., Side conditions for ordinary differential equations, J. Lie Theory, 25, 125-146 (2015) · Zbl 1351.34038
[13] Eguchi, T.; Gilkey, P. B.; Hanson, A. J., Gravitation, gauge theories and differential geometry, Phys. Rep., 66, 213-393 (1980)
[14] Gaeta, G., Smooth changes of frame and prolongations of vector fields, Int. J. Geom. Methods Mod. Phys., 4, 807-827 (2007) · Zbl 1146.58029
[15] Gaeta, G., A gauge-theoretic description of \(\mu \)-prolongations, and \(\mu \)-symmetries of differential equations, J. Geom. Phys., 59, 519-539 (2009) · Zbl 1170.58008
[16] Gaeta, G., Twisted symmetries of differential equations, J. Nonlinear Math. Phys., 16, S107-S136 (2009) · Zbl 1362.35022
[17] Gaeta, G., Gauge fixing and twisted prolongations, J. Phys. A, 44, Article 325203 pp. (2011), (9 pp) · Zbl 1231.70027
[18] Gaeta, G., Simple and collective twisted symmetries, J. Nonlinear Math. Phys., 21, 593-627 (2014) · Zbl 1420.34036
[19] Gaeta, G.; Morando, P., On the geometry of lambda-symmetries and PDE reduction, J. Phys. A, 37, 6955-6975 (2004) · Zbl 1066.35007
[20] Gibbons, J.; Tsarev, S. P., Reductions of the benney equations, Phys. Lett. A, 211, 19-24 (1996) · Zbl 1072.35588
[21] Gonzalez-Lopez, A., Symmetry and integrability by quadratures opf ordinary differential equations, Phys. Lett. A, 45, 190-194 (1988)
[22] Krasil’schik, I. S.; Vinogradov, A. M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (1999), A.M.S. · Zbl 0911.00032
[23] Krasil’shchik, I. S., A natural geometric construction underlying a class of Lax pairs, Lobachevskii J. Math., 37, 60-65 (2016), see also arXiv:1401.0612 · Zbl 1380.37127
[24] Krasil’shchik, I. S.; Vinogradov, A. M., Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and backlund transformations, Acta Appl. Math., 15, 161-209 (1989) · Zbl 0692.35003
[25] Morando, P., Deformation of Lie derivative and \(\mu \)-symmetries, J. Phys. A, 40, 11547-11560 (2007) · Zbl 1130.34020
[26] C. Muriel, J.L. Romero, \( C^\infty \)-symmetries and integrability of ordinary differential equations, in: Proceedings of the I Colloquium on Lie theory and applications (Vigo), 2002, pp. 143-150. · Zbl 1029.34028
[27] Muriel, C.; Romero, J. L., \( C^\infty\) symmetries and nonsolvable symmetry algebras, IMA J. Appl. Math., 66, 477-498 (2001) · Zbl 1006.34032
[28] Muriel, C.; Romero, J. L., New methods of reduction for ordinary differential equations, IMA J. Appl. Math., 66, 111-125 (2001) · Zbl 1065.34006
[29] Muriel, C.; Romero, J. L., Prolongations of vector fields and the invariants-by-derivation property, Theoret. Math. Phys., 113, 1565-1575 (2002)
[30] Muriel, C.; Romero, J. L., \( C^\infty\) Symmetries and reduction of equations without Lie point symmetries, J. Lie Theory, 13, 167-188 (2003) · Zbl 1058.34046
[31] Muriel, C.; Romero, J. L., \( C^\infty \)-Symmetries and nonlocal symmetries of exponential type, IMA J. Appl. Math., 72, 191-205 (2007) · Zbl 1195.34052
[32] Muriel, C.; Romero, J. L., Integrating factors and lambda-symmetries, J. Nonlinear Math. Phys., 15- S3, 300-309 (2008) · Zbl 1362.34057
[33] Muriel, C.; Romero, J. L., First integrals integrating factors and \(\lambda \)-symmetries of second-order differential equations, J. Phys. A, 42, Article 365207 pp. (2009) · Zbl 1184.34009
[34] Muriel, C.; Romero, J. L., A \(\lambda \)-symmetry-based method for the linearization and determination of first integrals of a family of second-order ordinary differential equations, J. Phys. A, 44, Article 245201 pp. (2011) · Zbl 1233.34001
[35] Muriel, C.; Romero, J. L., Second-order differential equations with first integrals of the form \(C ( t ) + 1 / ( A ( t , x ) x + B ( t , x ) )\), J. Nonlinear Math. Phys., 18-S1, 237-250 (2011) · Zbl 1362.34008
[36] Muriel, C.; Romero, J. L., Nonlocal symmetries telescopic vector fields and \(\lambda \)-symmetries of ordinary differential equations, Symmetry Integrability Geom. Methods Appl., 8, 106-121 (2012) · Zbl 1296.34085
[37] Muriel, C.; Romero, J. L., The \(\lambda \)-symmetry reduction method and Jacobi last multipliers, Commun. Nonlinear Sci. Numer. Simul., 19, 807-820 (2014) · Zbl 1457.34023
[38] Nakahara, M., Geometry, Topology, and Physics (2017), IOP
[39] Olver, P. J., Application of Lie Groups to Differential Equations (1986), Springer · Zbl 0588.22001
[40] Olver, P. J., Equivalence, Invariants and Symmetry (1995), Cambridge University Press · Zbl 0837.58001
[41] Prykarpatski, A. K., On the linearization covering technique and its application to integrable nonlinear differential systems, Symmetry Integrability Geom. Methods Appl., 14, 023 (2018) · Zbl 1434.17033
[42] Pucci, E.; Saccomandi, G., On the reduction methods for ordinary differential equations, J. Phys. A, 35, 6145-6155 (2002) · Zbl 1045.34014
[43] Stephani, H.; equations, Differential, Differential Equations their Solution using Symmetries (1989), Cambridge University Press · Zbl 0704.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.