×

Bounds for several-disk packings of hyperbolic surfaces. (English) Zbl 1445.52014

The paper under review considers the problem of packing disjoint open metric disks in hyperbolic surfaces. The general motivating question the author states is the following: for a fixed \(k \in \mathbb N\) and topological manifold \(M\) that admits a complete constant-curvature metric of finite volume, what is the supremal density of packings of \(M\) by \(k\) balls of equal radius, taken over all such metrics with fixed curvature?
Briefly mentioning the Euclidean case of this problem, the author then focuses on the \(2\)-dimensional hyperbolic situation. Here he proves an upper bound on the radius of a packing of a complete, finite-area, \(n\)-cusped hyperbolic surface by \(k\) disks of equal radius in terms of \(k, n\) and the Euler characteristic of this surface. The author gives topological conditions for the surface to have such a packing, and discusses specific situations for which his bound is attained, thus showing its optimality. Such optimal surfaces can be orientable or non-orientable, but there are only finitely many of them for each fixed \(k, n\) and Euler characteristic.

MSC:

52C15 Packing and covering in \(2\) dimensions (aspects of discrete geometry)
05B45 Combinatorial aspects of tessellation and tiling problems
57M50 General geometric structures on low-dimensional manifolds

Software:

kepler98

References:

[1] Adams, C. C., The noncompact hyperbolic \(3\)-manifold of minimal volume, Proc. Amer. Math. Soc.100 (1987) 601-606. · Zbl 0634.57008
[2] Bavard, C., Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. \((6)5 (1996) 191-202\). · Zbl 0873.30026
[3] Böröczky, K., Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar.32 (1978) 243-261. · Zbl 0422.52011
[4] Böröczky, K. and Florian, A., über die dichteste Kugelpackung im hyperbolischen Raum, Acta Math. Acad. Sci. Hungar15 (1964) 237-245. · Zbl 0125.39803
[5] Canary, R. D., Epstein, D. B. A. and Green, P., Notes on notes of thurston, in Analytical and Geometric Aspects of Hyperbolic Space, , Vol. 111 (Cambridge Univ. Press, 1987), pp. 3-92. · Zbl 0612.57009
[6] Cohn, H., Kumar, A., Miller, S. D., Radchenko, D. and Viazovska, M., The sphere packing problem in dimension 24, Ann. of Math. (2)185 (2017) 1017-1033. · Zbl 1370.52037
[7] Cohn, H. and Zhao, Y., Sphere packing bounds via spherical codes, Duke Math. J.163 (2014) 1965-2002. · Zbl 1296.05046
[8] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd edn., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 290 (Springer-Verlag, New York, 1993). With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. · Zbl 0785.11036
[9] DeBlois, J., The centered dual and the maximal injectivity radius of hyperbolic surfaces, Geom. Topol.19 (2015) 953-1014. · Zbl 1330.51007
[10] DeBlois, J., The geometry of cyclic hyperbolic polygons, Rocky Mountain J. Math.46 (2016) 801-862. · Zbl 1350.51003
[11] DeBlois, J., The local maxima of maximal injectivity radius among hyperbolic surfaces, Indiana Univ. Math. J.66 (2017) 1173-1187. · Zbl 1376.30033
[12] DeBlois, J., The Delaunay tessellation in hyperbolic space, Math. Proc. Cambridge Philos. Soc.164 (2018) 15-46. · Zbl 1383.52019
[13] Edmonds, A. L., Ewing, J. H. and Kulkarni, R. S., Regular tessellations of surfaces and \((p,q,2)\)-triangle groups, Ann. of Math. \((2)116 (1982) 113-132\). · Zbl 0497.57001
[14] Farb, B. and Margalit, D., A Primer on Mapping Class Groups, , Vol. 49 (Princeton Univ. Press, 2012). · Zbl 1245.57002
[15] Fenchel, W., Elementary Geometry in Hyperbolic Space, , Vol. 11 (Walter de Gruyter & Co., 1989). With an editorial by Heinz Bauer. · Zbl 0674.51001
[16] M. Gendulphe, The injectivity radius of hyperbolic surfaces and some Morse functions over moduli spaces, preprint (2015), arXiv:1510.02581. · Zbl 1327.53039
[17] Hales, T. C., A proof of the Kepler conjecture, Ann. of Math. \((2)162 (2005) 1065-1185\). · Zbl 1096.52010
[18] Katok, S., Fuchsian Groups, (Univ. Chicago Press, IL, 1992). · Zbl 0753.30001
[19] Kojima, S. and Miyamoto, Y., The smallest hyperbolic \(3\)-manifolds with totally geodesic boundary, J. Differential Geom.34 (1991) 175-192. · Zbl 0729.53042
[20] Meyerhoff, R., The cusped hyperbolic \(3\)-orbifold of minimum volume, Bull. Amer. Math. Soc. (N.S.)13 (1985) 154-156. · Zbl 0602.57009
[21] Mumford, D., A remark on Mahler’s compactness theorem, Proc. Amer. Math. Soc.28 (1971) 289-294. · Zbl 0215.23202
[22] Musin, O. R. and Tarasov, A. S., The Tammes problem for \(N=14\), Exp. Math.24 (2015) 460-468. · Zbl 1327.52042
[23] Papadopoulos, A. and Théret, G., Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc.138 (2010) 1775-1784. · Zbl 1197.32006
[24] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, , Vol. 149 (Springer-Verlag, New York, 1994). · Zbl 0809.51001
[25] Rogers, C. A., The packing of equal spheres, Proc. London Math. Soc. (3)8 (1958) 609-620. · Zbl 0085.03302
[26] W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint (1998), arXiv/math:9801039.
[27] Tóth, L. Fejes, On the densest packing of spherical caps, Amer. Math. Monthly56 (1949) 330-331. · Zbl 0035.10804
[28] Viazovska, M. S., The sphere packing problem in dimension 8, Ann. of Math. (2)185 (2017) 991-1015. · Zbl 1373.52025
[29] Yamada, A., On Marden’s universal constant of Fuchsian groups. II, J. Anal. Math.41 (1982) 234-248. · Zbl 0513.30037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.