×

Rigidity at infinity for lattices in rank-one Lie groups. (English) Zbl 1459.53050

The author studies rigidity properties for lattices in the group \(G_p=\mathrm{PU}(p,1)\) or \(\mathrm{PS}p(p,1)\). The case of \(\mathrm{PO}(p,1)\) has been considered by M. Bucher et al. [Springer INdAM Ser. 3, 47–76 (2013; Zbl 1268.53056)] and also by S. Francaviglia and B. Klaff [Geom. Dedicata 117, 111–124 (2006; Zbl 1096.51004)]. This study originates in the results of Mostow about rigidity properties of lattices in locally symmetric spaces. Let \(X^p\) be the hyperbolic space associated to \(G_p\) and \(\Gamma \subset G_p\) a lattice such that the manifold \(M^p=\Gamma \backslash X^p\) is non-compact and has finite volume. For a representation \(\rho \) of \(\Gamma \) in \(G_m\), \(m\geq p\), the volume \(\mathrm{Vol}(\rho )\) is defined as the infimum of volumes of submanifolds in \(X^m\) associated to certain \(\rho \)-equivariant maps. Assume that \(\Gamma \) is without torsion. It is proven that \(\mathrm{Vol}(\rho )\leq\mathrm{Vol}(M^p)\) and equality holds if the representation \(\rho \) is a faithful representation of \(\Gamma \) into the isometry group of a totally geodesic copy of \(X^p\) contained in \(X^m\). Furthermore, the author considers a sequence \(\rho _n\) of representations of \(\Gamma \) in \(G_m\) such that \[\lim _{n\to \infty }\mathrm{Vol}(\rho _n)=\mathrm{Vol}(M^p).\] Then it is shown that there are \(g_n\in G_m\) such that \(g_n\circ \rho _n\circ g_n^{-1}\) converges to a representation which preserves a totally geodesic copy of \(X^p\) and whose \(X^p\) component is conjugated to the standard lattice embedding of \(\Gamma \) into \(G_p\).

MSC:

53C24 Rigidity results
53C35 Differential geometry of symmetric spaces
22E40 Discrete subgroups of Lie groups

References:

[1] Albuquerque, P., Patterson-Sullivan measures in higher rank symmetric spaces, C. R. Acad. Sci. Paris Sr. I Math.324 (1997) 427-432. · Zbl 0876.53032
[2] Albuquerque, P., Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal.9 (1999) 1-28. · Zbl 0954.53031
[3] Ballman, W., Gromov, M. and Schroeder, V., Manifolds of Nonpositive Curvature (Birkhäuser, 1985). · Zbl 0591.53001
[4] Besson, G., Courtois, G. and Gallot, S., Entropies et rigidits des espaces localement symtriques de courbure strictement ngative, Geom. Funct. Anal.5 (1995) 731-799. · Zbl 0851.53032
[5] Besson, G., Courtois, G. and Gallot, S., Minimal entropy and Mostow’s rigidity theorems, Ergodic Theory Dynam. Systems16 (1996) 623-649. · Zbl 0887.58030
[6] Besson, G., Courtois, G. and Gallot, S., A real Schwarz lemma and some applications, Rend. Mat. Appl. (7)18 (1998) 381-410. · Zbl 0909.53001
[7] Besson, G., Courtois, G. and Gallot, S., Inégalités de Milnor-Wood géométriques, Comment. Math. Helv.82 (2007) 753-803. · Zbl 1143.53040
[8] Bowditch, B., Geometrical finiteness with variable negative curvature, Duke J. Math.77 (1995) 250-253. · Zbl 0877.57018
[9] Bucher, M., Burger, M. and Iozzi, A., A Dual Interpretation of the Gromov-Thurston Proof of Mostow Rigidity and Volume Rigidity for Representations of Hyperbolic Lattices, (Springer, 2013), pp. 47-76. · Zbl 1268.53056
[10] M. Burger and A. Iozzi, Bounded Cohomology and representation varieties of lattices in \(PSU(1,n)\), preprint (2001).
[11] Burger, M. and Mozes, S., \(CAT(-1)\)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc.9 (1996) 57-93. · Zbl 0847.22004
[12] Connell, C. and Farb, B., Minimal entropy rigidity for lattices in products of rank one symmetric spaces, Comm. Anal. Geom.11 (2003) 1001-1026. · Zbl 1088.58006
[13] Connell, C. and Farb, B., The degree theorem in higher rank, J. Differential Geom.65 (2003) 19-59. · Zbl 1067.53032
[14] Corlette, K., Archimedean superrigidity and hyperbolic geometry, Ann. of Math. (2)135 (1992) 165-182. · Zbl 0768.53025
[15] Culler, M. and Shalen, P. B., Varieties of group representations and splitting of \(3\)-manifolds, Ann. of Math.117 (1983) 109-146. · Zbl 0529.57005
[16] Francaviglia, S., Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds, Int. Math. Res. Not.2004 (2004) 425-459. · Zbl 1088.57015
[17] Francaviglia, S., Constructing equivariant maps for representations, Ann. Inst. Fourier (Grenoble)59 (2009) 393-428. · Zbl 1171.57016
[18] Francaviglia, S. and Klaff, B., Maximal volume representations are Fuchsian, Geom. Dedicata117 (2006) 111-124. · Zbl 1096.51004
[19] S. Francaviglia and A. Savini, Volume rigidity at ideal points of the character variety of hyperbolic \(3\)-manifolds, https://arxiv.org/abs/1706.07347. · Zbl 1507.22030
[20] Kim, S. and Kim, I., Volume invariant and maximal representations of discrete subgroups of Lie groups, Math. Z.276 (2014) 1189-1213. · Zbl 1292.22003
[21] Koziarz, V. and Maubon, J., Harmonic maps and representations of non-uniform lattices of \(PU(m,1)\), Ann. Inst. Fourier (Grenoble)58 (2008) 507-558. · Zbl 1147.22009
[22] Morgan, J. W., Group actions on trees and the compactification of the space of classes of \(SO(n,1)\)-representations, Topology25 (1986) 1-33. · Zbl 0595.57030
[23] Morgan, J. W. and Shalen, P. B., Valuations, trees and degeneration of hyperbolic structures I, Ann. of Math.120 (1984) 401-476. · Zbl 0583.57005
[24] Mostow, G. D., Strong Rigidity of Locally Symmetric Spaces, Annals Mathematics Studies, Vol. 78 (Princeton University Press, 1973). · Zbl 0265.53039
[25] Nicholls, P. J., The Ergodic Theory of Discrete Groups, , Vol. 143 (Cambridge University Press, 1989). · Zbl 0674.58001
[26] Roblin, T., Thomas, Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques, Ergodic Theory Dynam. Syst.20 (2000) 1785-1819. · Zbl 0968.37012
[27] Yue, C., The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc.12 (1996) 4965-5005. · Zbl 0864.58047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.