×

Homotopy type of skeleta of the flag complex over a finite vector space and generalized Galois numbers. (English) Zbl 1539.57026

Summary: Let \({\mathscr{F}}\) stand for the flag complex associated to the lattice of proper subspaces of a finite-dimensional vector space \(V\). This paper aims at giving a (discrete) Morse theoretical proof of the fact that the \(k\)-th skeleton of \({\mathscr{F}}\) is homotopy equivalent to a wedge of spheres of dimension \(\min \{k,\dim ({\mathscr{F}})\} \). The tight control provided by Morse theoretic methods (through an explicit discrete gradient field) allows us to give a formula for the number of spheres appearing in each of these wedge summands. As an application, we derive an explicit formula for the number of flags on \(V\) of a given dimension, i.e., the number of simplices in \({\mathscr{F}}\) of the given dimension. Rather than depending on generalized Galois numbers, our formula for flags is given in terms of weighted inversion statistics of the symmetric group.

MSC:

57Q70 Discrete Morse theory and related ideas in manifold topology
55P15 Classification of homotopy type
Full Text: DOI

References:

[1] Babson, E.; Hersh, P., Discrete Morse functions from lexicographic orders, Trans. Am. Math. Soc., 357, 2, 509-534 (2005) · Zbl 1050.05117 · doi:10.1090/S0002-9947-04-03495-6
[2] Babson, E.; Björner, A.; Linusson, S.; Shareshian, J.; Welker, V., Complexes of not \(i\)-connected graphs, Topology, 38, 2, 271-299 (1999) · Zbl 0936.57002 · doi:10.1016/S0040-9383(98)00009-3
[3] Björner, A.; Wachs, Ml, Shellable nonpure complexes and posets. I, Trans. Am. Math. Soc., 348, 4, 1299-1327 (1996) · Zbl 0857.05102 · doi:10.1090/S0002-9947-96-01534-6
[4] Bliem, T.; Kousidis, S., The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics, J. Algebraic Comb., 37, 2, 361-380 (2013) · Zbl 1258.05005 · doi:10.1007/s10801-012-0373-1
[5] Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Combin., 48:Art. B48c, 35 (2002) · Zbl 1048.57015
[6] Hersh, P., On optimizing discrete Morse functions, Adv. Appl. Math., 35, 3, 294-322 (2005) · Zbl 1083.55010 · doi:10.1016/j.aam.2005.04.001
[7] Herzog, Jürgen; Hibi, Takayuki, Monomial Ideals, Monomial Ideals, 3-22 (2011), London: Springer London, London · Zbl 1206.13001
[8] Hultman, A., Quotient complexes and lexicographic shellability, J. Algebraic Comb., 16, 1, 83-96 (2002) · Zbl 1033.52017 · doi:10.1023/A:1020886515443
[9] Jonsson, Jakob, Simplicial Complexes of Graphs (2008), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1152.05001
[10] Kousidis, S., Asymptotics of generalized Galois numbers via affine Kac-Moody algebras, Proc. Am. Math. Soc., 141, 10, 3313-3326 (2013) · Zbl 1270.05012 · doi:10.1090/S0002-9939-2013-11592-3
[11] Kozlov, D., Collapsibility of \(\Delta (\Pi_n)/{\cal{S}}_n\) and some related CW complexes, Proc. Am. Math. Soc., 128, 8, 2253-2259 (2000) · Zbl 0939.05086 · doi:10.1090/S0002-9939-99-05301-0
[12] Kozlov, Dmitry, Combinatorial Algebraic Topology (2008), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1157.57300
[13] Kratzer, C.; Thévenaz, J., Type d’homotopie des treillis et treillis des sous-groupes d’un groupe fini, Comment. Math. Helv., 60, 1, 85-106 (1985) · Zbl 0606.06006 · doi:10.1007/BF02567401
[14] Shareshian, J., Discrete Morse theory for complexes of 2-connected graphs, Topology, 40, 4, 681-701 (2001) · Zbl 0980.57005 · doi:10.1016/S0040-9383(99)00076-2
[15] Vinroot, Cr, An enumeration of flags in finite vector spaces, Electron. J. Comb., 19, 3, 9 (2012) · Zbl 1253.05023 · doi:10.37236/2366
[16] Zax, R.E.: Simplifying complicated simplicial complexes: discrete Morse theory and its applications. A.B. Thesis, Harvard University, 2012. http://www.math.harvard.edu/theses/senior/zax/zax.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.