×

Phase field modelling of surfactants in multi-phase flow. (English) Zbl 1431.35255

Surfactants are chemicals that,when dissolved in a system of multiple immiscible fluids, tend to form layers at the fluid-fluid interfaces and thus reduce the surface tension.
In this paper, a diffuse interface model for surfactants in multi-phase flow with three or more fluids is derived. A system of Cahn-Hilliard equations is coupled with a Navier-Stokes system and an advection-diffusion equation for the surfactant ensuring the thermodynamic consistency. The governing equations are presented in Section 2.7.
Specifically, the case of local chemical equilibrium with respect to the surfactant is considered.
The authors derive a general moving boundary problem for multi-phase flow of immiscible, incompressible fluids with surfactant attached to the equations presented in the Section 2.7. The surfactant is subject to advection-diffusion equations in the bulk and on the interfaces and impacts on the flow via the capillary term and the Marangoni force. A general phase field model is then derived and summarized in Section 3.4 following the same procedures. A detailed asymptotic analysis has been performed, which links the two models in the sense that the sharp interface limit of the phase field model is the moving boundary problem. Some numerical simulations of surfactant diffusion through a stationary triple junction and of a Marangoni effects showcase the capability of the model and support the results of the asymptotic analysis.
The authors plan to address the non-instantaneous case in forthcoming work using some techniques already considered in the Section 5.

MSC:

35R37 Moving boundary problems for PDEs
76T30 Three or more component flows
35R01 PDEs on manifolds
35C20 Asymptotic expansions of solutions to PDEs
76D45 Capillarity (surface tension) for incompressible viscous fluids

References:

[1] Abels, H., Garcke, H., & Gr¨un, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities.Math. Models Methods Appl. Sci.22 (2012), 1150014 (40 pp.).Zbl1242.76342 MR2890451 · Zbl 1242.76342
[2] Abels, H., Lam, K. F., & Stinner, B., Analysis of the diffuse domain approach for a bulk-surface coupled PDE system.SIAM J. Math. Anal.47(2015), 3687-3725.Zbl1326.35112 MR3403136 · Zbl 1326.35112
[3] Adalsteinsson, D. & Sethian, J. A., A level set approach to a unified model for etching, deposition, and lithography I: Algorithms and two-dimensional simulations.J. Comput. Phys.120(1995), 128-144. Zbl0864.65086 MR1484885 · Zbl 0864.65086
[4] Alk¨amper, M., Dedner, A., Kl¨ofkorn, R., & Nolte, M., The DUNE-ALUGrid Module.Arch. Numer. Software4(2016), 1-28.
[5] Alke, A., & Bothe, D., 3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method.Fluid Dynam. Mater. Process.5(2009), 345-372.
[6] Alt, H. W., The entropy principle for interfaces. Fluids and solids.Adv. Math. Sci. Appl.19(2009), 585- 663.Zbl1194.35003 MR2606135 · Zbl 1194.35003
[7] Ayachit, U..The ParaView Guide: A Parallel Visualization Application.Kitware, Inc., USA (2015).
[8] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L., Rupp, K., Smith, B. F., Zampini, S., & Zhang, H., PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory (2016).
[9] Banas, L. & N¨urnberg, R., Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow.ESAIM: M2AN51(2017), 1089-1117.Zbl1371.35212 MR3666658 · Zbl 1371.35212
[10] Barrett, J. W., Garcke, H., & N¨urnberg, R., Stable finite element approximations of two-phase flow with soluble surfactant.J. Comput. Phys.297(2015), 530-564.Zbl1349.76175 MR3361677 · Zbl 1349.76175
[11] Bellettini, G., Braides, A., & Riey, G., Variational approximation of anisotropic functionals on partitions. Ann. Mat. Pur. Appl.184(2005), 75-93.Zbl1223.49016 MR2128095 · Zbl 1223.49016
[12] Betounes, D. E., Kinematics of submanifolds and the mean curvature normal.Arch. Rational Mech. Anal. 96(1986), 1-27.Zbl0615.53011 MR0853973 · Zbl 0615.53011
[13] Bothe, D., & Pr¨uss, J., On the Interface formation model for dynamic triple lines. In: Shibata Y., Suzuki Y. (eds.),Mathematical Fluid Dynamics, Present and Future. Springer Proceedings in Mathematics & Statistics, vol. 183. Springer, Tokyo (2016), pp. 25-47.Zbl1366.76089 MR3613756 · Zbl 1366.76089
[14] Bothe, D. & Reusken, A.,Transport Processes at Fludic Interfaces.Advances in Mathematical Fluid Mechanics. Birkh¨auser Basel (2017).Zbl1378.76006 · Zbl 1378.76006
[15] Boyer, F. & Lapuerta, C., Study of a three component Cahn-Hilliard flow model.ESAIM: M2AN40 (2006), 653-687.Zbl1173.35527 MR2274773 · Zbl 1173.35527
[16] Boyer, F. & Minjeaud, S., Hierarchy of consistentn-component Cahn-Hilliard systems.Math. Models Methods Appl. Sci.24(2014), 2885-2928.Zbl1308.35004 MR3269782 · Zbl 1308.35004
[17] Bretin, E. & Masnou, S., A new phase field model for inhomogeneous minimal partitions, and applications to droplets dynamics.Interface Free Bound.19(2017), 141-182.Zbl1377.49045 MR3667698 · Zbl 1377.49045
[18] Bronsard, L., Garcke, H., & Stoth, B., A multi-phase Mullins-Sekerka system: Matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem.Proc. Roy. Soc. Edinburgh Sect. A128(1998), 481-506.Zbl0924.35199 MR1632810 · Zbl 0924.35199
[19] Bronsard, L. & Reitich, F., On three phase boundary motion and the singular limit of a vectorvalued Ginzburg-Landau equation.Arch. Rational Mech. Anal.124(1993), 355-379.Zbl0785.76085 MR1240580 · Zbl 0785.76085
[20] Brun, M., Delample, M., Harte, E., Lecomte, S., & Leal-Calderon, F., Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions.Food Res. Int.67 (2015), 366-375.
[21] Burger, M., Elvetun, O. L., & Schlottbom, M., Analysis of the diffuse domain method for second order elliptic boundary value problems.Found. Comput. Math.17(2017), 627-674.Zbl1371.35064 MR3648102 · Zbl 1371.35064
[22] Cermelli, P., Fried, E., & Gurtin, M. E., Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces.J. Fluid Mech.544(2005), 339-351.Zbl1083.76061 MR2262061 · Zbl 1083.76061
[23] Dedner, A., Kl¨ofkorn, R., Nolte, M., & Ohlberger, M., A generic interface for parallel and adaptive discretization schemes: Abstraction principles and the DUNE-FEM module.Computing90(2010), 165- 196.Zbl1201.65178 MR2735465 · Zbl 1201.65178
[24] Diamant, H. & Andelman, D., Kinetics of surfactant adsorption at fluid-fluid interfaces.J. Phys. Chem. 100(1996), 13732-13742.
[25] Ding, H., Spelt, P. D. M., & Shu, C., Diffuse interface model for incompressible two-phase flows with large density ratios.J. Comput. Phys.226(2007), 2078-2095.Zbl1388.76403 · Zbl 1388.76403
[26] Dong, S., An efficient algorithm for incompressibleN-phase flows.J. Comput. Phys.276(2014), 691- 728.Zbl1349.76196 MR3252597 · Zbl 1349.76196
[27] Dong, S., Physical formulation and numerical algorithm for simulatingNimmiscible incompressible fluids involving general order parameters.J. Comput. Phys.283(2015), 98-128.Zbl1351.76234 MR3294665 · Zbl 1351.76234
[28] Eastoe, J. & Dalton, J. S., Dynamic surface tension and adsorption mechanisms of surfactants at the airwater interface.Adv. Colloid Interface Sci.85(2000), 103-144.
[29] Elliott, C. M. & Stinner, B., Analysis of a diffuse interface approach to an advection diffusion equation on a moving surface.Math. Models Methods Appl. Sc.19(2009), 787-802.Zbl1200.35018 MR2531040 · Zbl 1200.35018
[30] Engblom, S., Do-Quang, M., Amberg, G., & Tornberg, A.-K., On diffuse interface modeling and simulation of surfactants in two-phase fluid flow.Commun. Comput. Phys.14(2013), 879-915.Zbl1373. 76334 MR3040422 · Zbl 1373.76334
[31] Falgout, R. D., & Yang, U. M., HYPRE: A Library of High Performance Preconditioners. In: Sloot, P. M. A., Hoekstra, A. G., Tan, C. J. K., Dongarra, J. J. (eds.),Computational Science - ICCS 2002.Lecture Notes in Computer Science, vol. 2331. Springer, Berlin, Heidelberg (2002), pp. 632-641.Zbl1056.65046 · Zbl 1056.65046
[32] Ganesan, S. & Tobiska, L., A coupled arbitrary Lagrangian-Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants.J. Comput. Phys.228(2009), 2859-2873. Zbl1282.76118 MR2509299 · Zbl 1282.76118
[33] Garcke, H., Lam, K. F., & Stinner, B., Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci.12(2014), 1475-1522.Zbl1319.35309 MR3210738 · Zbl 1319.35309
[34] Garcke, H., Nestler, B., & Stoth, B., On anisotropic order parameter models for multi-phase systems and their sharp interface limits.Physica D115(1998), 87-108.Zbl0936.82010 MR1616772 · Zbl 0936.82010
[35] Garcke, H., Nestler, B., & Stoth, B., A multiphase field concept: Numerical simulations of moving phase boundaries and multiple junctions.SIAM J. Appl. Math.60(1999), 295-315.Zbl0942.35095 MR1740846 · Zbl 0942.35095
[36] Garcke, H. & Stinner, B., Second order phase field asymptotics for multi-component systems.Interface Free Bound.8(2006), 131-157.Zbl1106.35116 MR2256839 · Zbl 1106.35116
[37] Garcke, H., Stoth, B., & Nestler, B., Anisotropy in multi-phase systems: A phase field approach.Interface Free Bound.1(1999), 175-198.Zbl0959.35169 MR1867130 · Zbl 0959.35169
[38] Gross, S. & Reusken, A.,Numerical Methods for Two-Phase Incompressible Flows.Vol. 40 ofSpringer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg (2011).Zbl1222.76002 MR2799400 · Zbl 1222.76002
[39] Guo, Z., Lin, P., Lowengrub, J., & Wise, S. M., Mass conservative and energy stable finite difference methods for the quasi-incompressible Navier-Stokes-Cahn-Hilliard system: Primitive variable and projection-type schemes.Comput. Methods Appl. Mech. Engrg.326(2017), 144-174.MR3709187 · Zbl 1439.76121
[40] Gurtin, M. E., Polignone, D., & Vi˜nals, J., Two-phase binary fluids and immiscible fluids described by an order parameter.Math. Models Methods Appl. Sci.6(1996), 815-831.Zbl0857.76008 MR1404829 · Zbl 0857.76008
[41] Harkins, W. D. & Feldman, A., Films. The spreading of liquids and the spreading coefficient.J. Am. Chem. Soc.44(1922), 2665-2685.
[42] Hirt, C. W. & Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.39(1981), 201-225.Zbl0462.76020 · Zbl 0462.76020
[43] Hohenberg, P. C. & Halperin, B. I., Theory of dynamic critical phenomena.Rev. Mod. Phys.49(1977), 435-479.
[44] Hyman, J., Numerical methods for tracking interfaces.Physica D12(1984), 396-407.Zbl0604.65092 · Zbl 0604.65092
[45] James, A. J., & Lowengrub, J., A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant.J. Comput. Phys.201(2004), 685-722.Zbl1061.76062 MR2100518 · Zbl 1061.76062
[46] Karapetsas, G., Craster, R. V., & Matar, O. K., Surfactant-driven dynamics of liquid lenses.Phys. Fluids 23(2011), 122106. · Zbl 1225.76040
[47] Khatri, S. & Tornberg, A.-K., A numerical method for two phase flows with insoluble surfactants.Comput. Fluids49(2011), 150-165.Zbl1271.76209 MR2957082 · Zbl 1271.76209
[48] Kim, J., A generalized continuous surface tension force formulation for phase-field models for multicomponent immiscible fluid flows.Comput. Methods Appl. Mech. Engrg.198(2009), 3105-3112. Zbl1229.76105 MR2567859 · Zbl 1229.76105
[49] Kim, J., Phase-field models for multi-component fluid flows.Commun. Comput. Phys.12(2012), 613-661. Zbl1373.76030 MR2903596 · Zbl 1373.76030
[50] Kim, J., & Lowengrub, J., Phase field modeling and simulation of three-phase flows.Interface Free Bound.7(2005), 435-466.Zbl1100.35088 MR2191695 · Zbl 1100.35088
[51] Kr¨amer, C., Schauerte, M., Kowald, T. L., & Trettin, R. H. F., Three-phase-foams for foam concrete application.Mater. Charact.102(2015), 173-179.
[52] Kumar, A., Bhattacharjee, G., Kulkarni, B. D., & Kumar, R., Role of surfactants in promoting gas hydrate formation.Ind. Eng. Chem. Res.54(2015), 12217-12232.
[53] Lai, M.-C., Tseng, Y.-H., & Huang, H., An immersed boundary method for interfacial flows with insoluble surfactant.J. Comput. Phys.227(2008), 7279-7293.Zbl1201.76182 MR2433972 · Zbl 1201.76182
[54] Li, X., Lowengrub, J., R¨atz, A., & Voigt, A., Solving PDEs in complex geometries: A diffuse domain approach.Commun. Math. Sci.7(2009), 81-107.Zbl1178.35027 MR2512834 · Zbl 1178.35027
[55] Li, Y. & Kim, J., A comparison study of phase-field models for an immiscible binary mixture with surfactant.Eur. Phys. J. B85(2012), 340.
[56] Liu, H. & Zhang, Y., Phase-field modeling droplet dynamics with soluble surfactants.J. Comput. Phys.229 (2010), 9166-9187.Zbl05819938 · Zbl 1427.76187
[57] Lowengrub, J. & Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci.454(1998), 2617-2654.Zbl0927.76007 MR1650795 · Zbl 0927.76007
[58] Muradoglu, M. & Tryggvason, G., A front-tracking method for computation of interfacial flows with soluble surfactants.J. Comput. Phys.227(2008), 2238-2262.Zbl1329.76238 · Zbl 1329.76238
[59] Muradoglu, M. & Tryggvason, G. Simulations of soluble surfactants in 3D multiphase flow.J. Comput. Phys.274(2014), 737-757.Zbl1351.76174 · Zbl 1351.76174
[60] Myers, D.,Surfactant Science and Technology.John Wiley & Sons (2005).
[61] Nichols, B. D., Hirt, C. W., & Hotchkiss, R. S., A fractional volume of fluid method for free boundary dynamics. In: Reynolds, W. C., MacCormack, R. W. (eds.),Seventh International Conference on Numerical Methods in Fluid Dynamics.Lecture Notes in Physics, vol. 141. Springer, Berlin, Heidelberg (1981), pp. 304-309.
[62] Owen, N. C., Rubinstein, J., & Sternberg, P., Minimizers and gradient flows for singularly perturbed bistable potentials with a Dirichlet condition.Proc. R. Soc. Lond. A429(1990), 505-532.Zbl0722.49021 MR1057968 · Zbl 0722.49021
[63] Popescu, M. N., Oshanin, G., Dietrich, S., & Cazabat, A.-M., Precursor films in wetting phenomena. J. Phys. Condens. Matter24(2012), 243102.
[64] R¨atz, A. & Voigt, A., PDE’s on surfaces – a diffuse interface approach.Commun. Math. Sci.4(2006), 575-590.Zbl1113.35092 MR2247931 · Zbl 1113.35092
[65] Rowlinson, J. S. & Widom, B.,Molecular Theory of Capillarity.Courier Corporation (2013).
[66] R¨atz, A., Ribalta, A., & Voigt, A., Surface evolution of elastically stressed films under deposition by a diffuse interface model.J. Comput. Phys.214(2006), 187-208.Zbl1088.74035 MR2208676 · Zbl 1088.74035
[67] Seiler, J.-M., Fouquet, A., Froment, K., & Defoort, F., Theoretical analysis for corium pool with miscibility gap.Nucl. Technol.141(2003), 233-243.
[68] Sternberg, P., Vector-valued local minimizers of nonconvex variational problems.Rocky Mountain J. Math.21(1991), 799-807.Zbl0737.49009 MR1121542 · Zbl 0737.49009
[69] Stinner, B.,Derivation and analysis of a phase field model for alloy solidification.. Ph.D. thesis, Universit¨at Regensburg (2005).
[70] Stinner, B., Surface energies in multi phase systems with diffuse phase boundaries. InFree Boundary Problems, vol. 154 ofInternat. Ser. Numer. Math.Birkh¨auser, Basel (2007), pp. 413-423.Zbl1115.82011 MR2308401 · Zbl 1115.82011
[71] Sussman, M., Smereka, P., & Osher, S., A level set approach for computing solutions to incompressible two-phase flow.J. Comput. Phys.114(1994), 146-159.Zbl0808.76077 · Zbl 0808.76077
[72] Tadros, T. F.,Applied Surfactants: Principles and Applications.Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2005).
[73] Teigen, K. E., Li, X., Lowengrub, J., Wang, F., & Voigt, A., A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface.Commun. Math. Sci.4(2009), 1009-1037.Zbl1186.35168 MR2604629 · Zbl 1186.35168
[74] Teigen, K. E., Song, P., Lowengrub, J., & Voigt, A., A diffuse-interface model for two-phase flows with soluble surfactants.J. Comput. Phys.230(2011), 375-393.Zbl05842959 MR2737633 · Zbl 1428.76210
[75] Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawashi, N., Tauber, W., Han, J., Nas, S., & Jan, Y.-J., A front-tracking method for the computations of multiphase flow.J. Comput. Phys.169(2001), 708-759.Zbl1047.76574 MR3363449 · Zbl 1047.76574
[76] van der Sman, R. G. M. & van der Graaf, S., Diffuse interface model of surfactant adsorption onto flat and droplet interfaces.Rheol. Acta46(2006), 3-11.
[77] van der Waals, J. D., The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density.Z. Phys. Chem.13(1894), 657; English translation by J.S. Rowlinson.J. Stat. Phys.20 (1979), 197-200.Zbl1245.82006
[78] Xu, J.-J., Huang, Y., Lai, M.-C., & Li, Z., A coupled immersed interface and level set method for threedimensional interfacial flows with insoluble surfactant.Commun. Comput. Phys.15(2014), 451-469. Zbl1373.76199 · Zbl 1373.76199
[79] Xu, J.-J., Li, Z., Lowengrub, J., & Zhao, H., A level-set method for interfacial flows with surfactant. J. Comput. Phys.212(2006), 590-616.Zbl1161.76548 MR2187905 · Zbl 1161.76548
[80] Yang, X., & James, A. J., An arbitrary Lagrangian-Eulerian (ALE) method for interfacial flows with insoluble surfactants.Fluid Dynam. Mater. Process.3(2009), 65-95.Zbl1153.76401 MR2317255 · Zbl 1153.76401
[81] Yun, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.