×

An improved implicit method for mechanical systems with set-valued friction. (English) Zbl 1437.70022

Summary: The computational procedures of higher-order implicit integrators for mechanical systems with friction are provided in this paper. The dynamic equations are established using the augmented Lagrangian formulation, and set-valued friction forces are described by projection functions. To reduce the accuracy loss caused by event transitions and to eliminate spurious oscillations in the acceleration, a new robust event-driven scheme, which accurately detects event transitions and corrects the friction forces and accelerations at switching points, is proposed. The numerical performance of the proposed scheme is demonstrated by solving several benchmark problems. Numerical results show that the newly developed scheme can approximately achieve second-order accuracy, and they are more accurate than the classical Moreau time-stepping scheme under close computational efforts. Finally, a slider-crank system is simulated to prove the validity of the developed method for nonlinear mechanical systems with friction.

MSC:

70F40 Problems involving a system of particles with friction
Full Text: DOI

References:

[1] Acary, V., Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts, Appl. Numer. Math., 62, 10, 1259-1275 (2012) · Zbl 1351.70005
[2] Acary, V., Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction, Comput. Methods Appl. Mech. Eng., 256, 224-250 (2013) · Zbl 1352.74477
[3] Acary, V., Energy conservation and dissipation properties of time-integration methods for nonsmooth elastodynamics with contact, J. Appl. Math. Mech./Z. Angew. Math. Mech., 96, 5, 585-603 (2016) · Zbl 07775048
[4] Bathe, K. J., Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme, Comput. Struct., 85, 7-8, 437-445 (2007)
[5] Bathe, K. J.; Baig, M. M.I., On a composite implicit time integration procedure for nonlinear dynamics, Comput. Struct., 83, 31-32, 2513-2524 (2005)
[6] Bathe, K. J.; Noh, G., Insight into an implicit time integration scheme for structural dynamics, Comput. Struct., 98, 1-6 (2012)
[7] Brüls, O.; Acary, V.; Cardona, A., Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\( \alpha\) scheme, Comput. Methods Appl. Mech. Eng., 281, 131-161 (2014) · Zbl 1423.74659
[8] Chatelet, E.; Michon, G.; Manin, L.; Jacquet, G., Stick/slip phenomena in dynamics: choice of contact model. Numerical predictions & experiments, Mech. Mach. Theory, 43, 10, 1211-1224 (2008) · Zbl 1206.74016
[9] Chen, Q. Z.; Acary, V.; Virlez, G.; Brüls, O., A newmark-type integrator for flexible systems considering nonsmooth unilateral constraints, IMSD 2012-2nd Joint International Conference on Multibody System Dynamics (2012)
[10] Chen, Q. Z.; Acary, V.; Virlez, G.; Brüls, O., A nonsmooth generalized-\( \alpha\) scheme for flexible multibody systems with unilateral constraints, Int. J. Numer. Methods Eng., 96, 8, 487-511 (2013) · Zbl 1352.70012
[11] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\( \alpha\) method, J. Appl. Mech., 60, 2, 371-375 (1993) · Zbl 0775.73337
[12] Doyen, D.; Ern, A.; Piperno, S., Time-integration schemes for the finite element dynamic Signorini problem, SIAM J. Sci. Comput., 33, 1, 223-249 (2011) · Zbl 1315.74019
[13] Fan, X.; Walker, P. D.; Wang, Q., Modeling and simulation of longitudinal dynamics coupled with clutch engagement dynamics for ground vehicles, Multibody Syst. Dyn., 43, 2, 153-174 (2018) · Zbl 1414.70002
[14] Flores, P.; Leine, R.; Glocker, C., Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach, Multibody Syst. Dyn., 23, 2, 165-190 (2010)
[15] Flores, P.; Leine, R.; Glocker, C., Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems, Nonlinear Dyn., 69, 4, 2117-2133 (2012)
[16] Flores, P.; Machado, M.; Seabra, E.; Da Silva, M. T., A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems, J. Comput. Nonlinear Dyn., 6, 1 (2011)
[17] Foerg, M.; Geier, T.; Neumann, L.; Ulbrich, H., r-Factor strategies for the augmented Lagrangian approach in multibody contact mechanics, Proceedings of III European Conference on Computational Mechanics (2006)
[18] Hilber, H. M.; Hughes, T. J.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Earthq. Eng. Struct. Dyn., 5, 3, 283-292 (1977)
[19] Issanchou, C.; Acary, V.; Pérignon, F.; Touzé, C.; Le Carrou, J. L., Nonsmooth contact dynamics for the numerical simulation of collisions in musical string instruments, J. Acoust. Soc. Am., 143, 5, 3195-3205 (2018)
[20] Klepp, H. J., Trial-and-error based method for the investigation of multi-body systems with friction, J. Sound Vib., 5, 197, 629-637 (1996)
[21] Leine, R. I.; Glocker, C., A set-valued force law for spatial Coulomb-Contensou friction, Eur. J. Mech. A, Solids, 22, 2, 193-216 (2003) · Zbl 1038.74513
[22] Ma, Y.; Yu, S.; Wang, D., Vibration analysis of an oscillator with non-smooth dry friction constraint, J. Vib. Control, 23, 14, 2328-2344 (2017) · Zbl 1373.70013
[23] Marques, F.; Flores, P.; Claro, J. P.; Lankarani, H. M., A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems, Nonlinear Dyn., 86, 3, 1407-1443 (2016)
[24] Mashayekhi, M. J.; Kövecses, J., A comparative study between the augmented Lagrangian method and the complementarity approach for modeling the contact problem, Multibody Syst. Dyn., 40, 4, 327-345 (2017) · Zbl 1430.70017
[25] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, 1-82 (1988), Berlin: Springer, Berlin · Zbl 0703.73070
[26] Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P. P., Review and comparison of dry friction force models, Nonlinear Dyn., 83, 4, 1785-1801 (2016) · Zbl 1353.74057
[27] Pešek, L.; Hajžman, M.; Püst, L.; Zeman, V.; Byrtus, M.; Brüha, J., Experimental and numerical investigation of friction element dissipative effects in blade shrouding, Nonlinear Dyn., 79, 3, 1711-1726 (2015)
[28] Pfeiffer, F., On non-smooth dynamics, Meccanica, 43, 5, 533-554 (2008) · Zbl 1163.70305
[29] Pfeiffer, F., On impacts with friction, Appl. Comput. Math., 217, 3, 1184-1192 (2010) · Zbl 1381.74169
[30] Pfeiffer, F.; Foerg, M.; Ulbrich, H., Numerical aspects of non-smooth multibody dynamics, Comput. Methods Appl. Mech. Eng., 195, 50-51, 6891-6908 (2006) · Zbl 1120.70305
[31] Rahmanian, S.; Ghazavi, M. R., Bifurcation in planar Slider-Crank mechanism with revolute clearance joint, Mech. Mach. Theory, 91, 86-101 (2015)
[32] Schindler, T.; Rezaei, S.; Kursawe, J.; Acary, V., Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin methods, Comput. Methods Appl. Mech. Eng., 290, 250-276 (2015) · Zbl 1423.74918
[33] Tang, L.; Liu, J., Modeling and analysis of sliding joints with clearances in flexible multibody systems, Nonlinear Dyn., 94, 4, 2423-2440 (2018)
[34] Theodosiou, C.; Natsiavas, S., Dynamics of finite element structural models with multiple unilateral constraints, Int. J. Non-Linear Mech., 44, 4, 371-382 (2009) · Zbl 1203.74141
[35] Transeth, A. A.; Leine, R. I.; Glocker, C.; Pettersen, K. Y., Non-smooth 3d modeling of a snake robot with external obstacles, 2006 IEEE International Conference on Robotics and Biomimetics, 1189-1196 (2006), Kunming, China: IEEE, Kunming, China
[36] Transeth, A. A.; Leine, R. I.; Glocker, C.; Pettersen, K. Y.; Liljebäck, P., Snake robot obstacle-aided locomotion: modeling, simulations, and experiments, IEEE Trans. Robot., 24, 1, 88-104 (2008)
[37] Wood, W. L.; Bossak, M.; Zienkiewicz, O. C., An alpha modification of newmark’s method, Int. J. Numer. Methods Eng., 15, 10, 1562-1566 (1980) · Zbl 0441.73106
[38] Xiang, W.; Yan, S.; Wu, J., Dynamic analysis of planar mechanical systems considering stick-slip and stribeck effect in revolute clearance joints, Nonlinear Dyn., 95, 1, 321-341 (2019)
[39] Yu, S., An efficient computational method for vibration analysis of unsymmetric piecewise-linear dynamical systems with multiple degrees of freedom, Nonlinear Dyn., 71, 3, 493-504 (2013)
[40] Yu, S.; Wen, B., Vibration analysis of multiple degrees of freedom mechanical system with dry friction, Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci., 227, 7, 1505-1514 (2013)
[41] Zhang, H.; Xing, Y., A three-parameter single-step time integration method for structural dynamic analysis, Acta Mech. Sin., 35, 1, 112-128 (2019)
[42] Zhao, Z.; Liu, C.; Wang, N., Rocking dynamics of a planar rectangular block on a rigid surface, Multibody Syst. Dyn., 45, 1, 105-125 (2019) · Zbl 1412.70006
[43] Zhao, Z.; Lu, J.; Wang, Q.; Liu, C.; Wang, Q., The effect of non-spherical aspect of a dimer on the dynamic behaviors, Nonlinear Dyn., 94, 3, 2191-2204 (2018)
[44] Zheng, X.; Zhang, F.; Wang, Q., Modeling and simulation of planar multibody systems with revolute clearance joints considering stiction based on an lcp method, Mech. Mach. Theory, 130, 184-202 (2018)
[45] Zheng, X.; Zhang, R.; Wang, Q., Comparison and analysis of two Coulomb friction models on the dynamic behavior of Slider-Crank mechanism with a revolute clearance joint, Appl. Math. Mech., 39, 9, 1239-1258 (2018)
[46] Zhuang, F.; Wang, Q., Modeling and simulation of the nonsmooth planar rigid multibody systems with frictional translational joints, Multibody Syst. Dyn., 29, 4, 403-423 (2013)
[47] Zhuang, F.; Wang, Q., Modeling and analysis of rigid multibody systems with driving constraints and frictional translation joints, Acta Mech. Sin., 30, 3, 437-446 (2014) · Zbl 1346.70009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.