×

The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. (English) Zbl 1437.70010

Summary: In this article we analyze the following problem: given a mechanical system subject to (possibly redundant) bilateral and unilateral constraints with set-valued Coulomb’s friction, provide conditions such that the state, which consists of all contacts sticking in both tangential and normal directions, is solvable. The analysis uses complementarity problems, variational inequalities, and linear algebra, hence it provides criteria which are, in principle, numerically tractable. An algorithm and several illustrating examples are proposed.

MSC:

70E55 Dynamics of multibody systems
74M10 Friction in solid mechanics
74M15 Contact in solid mechanics

References:

[1] Abadie, M.; Brogliato, B., Dynamic simulation of rigid bodies: modelling of frictional contacts, Impacts in Mechanical Systems. Analysis and Modelling, 61-144 (2000), Berlin: Springer, Berlin · Zbl 1004.70010
[2] Acary, V.; Brogliato, B., Numerical Methods for Nonsmooth Dynamical Systems (2008), Berlin: Springer, Berlin · Zbl 1173.74001
[3] Addi, K.; Brogliato, B.; Goeleven, D., A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Applications in electronics, Math. Program., Ser. A, 126, 1, 31-67 (2011) · Zbl 1229.90224
[4] Adly, S.; Nacry, F.; Thibault, L., Preservation of prox-regularity of sets and application to constrained optimization, SIAM J. Optim., 26, 1, 448-473 (2016) · Zbl 1333.49031
[5] Akhadkar, N.; Acary, V.; Brogliato, B., Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation, Multibody Syst. Dyn., 42, 3, 249-282 (2018) · Zbl 1400.70016
[6] Anitescu, M.; Cremer, J. F.; Potra, F. A., Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems, Nonlinear Dyn., 24, 405-437 (1997) · Zbl 0899.70005
[7] Anitescu, M.; Cremer, J. F.; Potra, F. A.; Ferris, M. C.; Pang, J. S., On the existence of solutions to complementarity formulations of contact problems with friction, Complementarity and Variational Problems. State of the Art, 12-21 (1997), Philadelphia: SIAM, Philadelphia · Zbl 0887.70009
[8] Aubin, J. P., Applied Functional Analysis (1979), New York: Wiley, New York · Zbl 0424.46001
[9] Audren, H.; Kheddar, A., 3-D robust stability polyhedron in multicontact, IEEE Trans. Robot., 34, 2, 388-403 (2018)
[10] Balkcom, D.; Trinkle, J., Computing wrench cones for planar rigid body contact tasks, Int. J. Robot. Res., 21, 2, 1053-1066 (2002)
[11] Baraff, D., Issues in computing contact forces for non-penetrating rigid bodies, Algorithmica, 10, 2-4, 292-352 (1993) · Zbl 0777.70006
[12] Bernstein, D. S., Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory (2005), Princeton: Princeton University Press, Princeton · Zbl 1075.15001
[13] Bertsekas, D. P., Convex Optimization Theory (2009), Belmont: Athena Scientific, Belmont · Zbl 1242.90001
[14] Bicchi, A., Hands for dexterous manipulation and robust grasping: a difficulty road toward simplicity, IEEE Trans. Robot. Autom., 16, 6, 652-662 (2000)
[15] Blumentals, A.; Brogliato, B.; Bertails-Descoubes, F., The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial, Multibody Syst. Dyn., 38, 43-76 (2016) · Zbl 1372.70044
[16] Bretl, T.; Lall, S., Testing static equilibrium for legged robots, IEEE Trans. Robot., 24, 4, 794-807 (2008)
[17] Brogliato, B., Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems, Multibody Syst. Dyn., 29, 289-325 (2013) · Zbl 1271.70032
[18] Brogliato, B., Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction, Multibody Syst. Dyn., 32, 175-216 (2014) · Zbl 1351.70014
[19] Brogliato, B., Nonsmooth Mechanics. Models, Dynamics and Control (2016), Cham: Springer International Publishing Switzerland, Cham · Zbl 1333.74002
[20] Brogliato, B.; Goeleven, D., Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems, Multibody Syst. Dyn., 35, 39-61 (2015) · Zbl 1335.70035
[21] Brogliato, B.; Thibault, L., Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems, J. Convex Anal., 17, 3-4, 961-990 (2010) · Zbl 1217.34026
[22] Caron, S.; Pham, Q. C.; Nakamura, Y., ZMP support areas for multicontact mobility under frictional constraints, IEEE Trans. Robot., 33, 1, 67-80 (2017)
[23] Chen, X.; Xiang, S., Perturbation bounds of P-matrix linear complementarity problems, SIAM J. Optim., 18, 4, 1250-1265 (2007) · Zbl 1172.90018
[24] Choudhury, D.; Horn, R.; Pierce, S., Quasi-positive definite operators and matrices, Linear Algebra Appl., 99, 161-176 (1988) · Zbl 0654.15022
[25] Cottle, R.; Pang, J.; Stone, R., The Linear Complementarity Problem (1992), San Diego: Academic Press, San Diego · Zbl 0757.90078
[26] Facchinei, F.; Pang, J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Operations Research (2003), New York: Springer, New York · Zbl 1062.90002
[27] Fraczek, J.; Wojtyra, M., On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction, Mech. Mach. Theory, 46, 312-334 (2011) · Zbl 1336.70020
[28] Gholami, F.; Nasri, M.; Kovecses, J.; Teichmann, M., A linear complementarity formulation for contact problems with regularized friction, Mech. Mach. Theory, 105, 568-582 (2016)
[29] Glocker, C., Set-Valued Force Laws: Dynamics of Non-Smooth Systems (2001), Berlin: Springer, Berlin · Zbl 0979.70001
[30] Glocker, C.; Pfeiffer, F., Dynamical systems with unilateral contacts, Nonlinear Dyn., 3, 4, 245-259 (1992)
[31] Glocker, C.; Pfeiffer, F., Complementarity problems in multibody systems with planar friction, Arch. Appl. Mech., 63, 7, 452-463 (1993) · Zbl 0782.70008
[32] Goeleven, D., Complementarity and Variational Inequalities in Electronics (2017), San Diego: Academic Press, San Diego · Zbl 1377.94001
[33] Han, L.; Trinkle, J.; Li, Z. X., Grasp analysis as linear matrix inequality problems, IEEE Trans. Robot. Autom., 16, 6, 663-674 (2000)
[34] Higashimori, M.; Kimura, M.; Ishii, I.; Kaneko, M., Dynamic capturing strategy for a 2-D stick-shaped object based on friction independent collision, IEEE Trans. Robot., 23, 3, 541-552 (2007)
[35] Hiriart-Urruty, J. B.; Lemaréchal, C., Fundamentals of Convex Analysis (2001), Berlin: Springer, Berlin · Zbl 0998.49001
[36] De Jalón, J. G.; Gutteriez-Lopez, M. D., Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces, Multibody Syst. Dyn., 30, 3, 311-341 (2013) · Zbl 1274.70010
[37] De Jalón, J. G.; Unda, J.; Avello, A., Natural coordinates for the computer analysis of multibody systems, Comput. Methods Appl. Mech. Eng., 56, 3, 309-327 (1986) · Zbl 0577.70004
[38] Klepp, H. J., Existence and uniqueness of solutions for accelerations for multibody systems with friction, Z. Angew. Math. Mech., 75, 1, 679-689 (1995) · Zbl 0869.70013
[39] Laulusa, A.; Bauchau, O. A., Review of classical approaches for constraint enforcement in multibody systems, J. Comput. Nonlinear Dyn., 3, 1 (2008)
[40] Leine, R. I.; Glocker, C., A set-valued force law for spatial Coulomb-Contensou friction, Eur. J. Mech. A, Solids, 22, 2, 193-216 (2003) · Zbl 1038.74513
[41] Leine, R. I.; Van De Wouw, N., Stability and Convergence of Mechanical Systems with Unilateral Constraints (2008), Berlin: Springer, Berlin · Zbl 1143.70001
[42] Lötstedt, P., Coulomb friction in two-dimensional rigid body systems, Z. Angew. Math. Mech., 61, 605-615 (1981) · Zbl 0495.73095
[43] Lötstedt, P., Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math., 42, 2, 281-296 (1982) · Zbl 0489.70016
[44] Ma, S.; Wang, T., Planar multiple-contact problems subject to unilateral and bilateral kinetic constraints with static Coulomb friction, Nonlinear Dyn., 94, 99-121 (2018) · Zbl 1412.74052
[45] Moreau, J. J.; Zorski, H., Application of convex analysis to some problems of dry friction, Trends in Applications of Pure Mathematics to Mechanics, 263-280 (1979), London: Pitman, London · Zbl 0433.73096
[46] Negrut, D.; Serban, R.; Tasora, A., Posing multibody dynamics with friction and contact as a differential complementarity problem, J. Comput. Nonlinear Dyn., 13 (2018)
[47] Nikolic, M.; Borovac, B.; Rakovic, M., Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts, Multibody Syst. Dyn., 42, 197-218 (2018) · Zbl 1418.70018
[48] Or, Y.; Rimon, E., Analytic characterization of a class of three-contact frictional equilibrium postures in three-dimensional gravitational environments, Int. J. Robot. Res., 29, 1, 3-22 (2010)
[49] Or, Y.; Rimon, E., Characterization of frictional multi-legged equilibrium postures on uneven terrains, Int. J. Robot. Res., 36, 1, 105-128 (2017)
[50] Panagiotopoulos, P. D., Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions (1985), Basel: Birkhäuser, Basel · Zbl 0579.73014
[51] Panagiotopoulos, P. D.; Al-Fahed, A. M., Robot hand grasping and related problems: optimal control and identification, Int. J. Robot. Res., 13, 2, 127-136 (1994)
[52] Pang, J.; Trinkle, J., Stability characterization of rigid body contact problems with Coulomb friction, Z. Angew. Math. Mech., 80, 10, 643-663 (2000) · Zbl 0989.70002
[53] Pang, J. S.; Trinkle, J. C., Complementarity formulation and existence of solutions of dynamic rigid-body contact problems with Coulomb friction, Math. Program., 73, 2, 199-226 (1996) · Zbl 0854.70008
[54] Pang, J. S.; Trinkle, J. C.; Lo, G., A complementarity approach to a quasistatic multi-rigid-body contact problem, J. Comput. Optim. Appl., 5, 2, 139-154 (1996) · Zbl 0859.90123
[55] Pekal, M.; Fraczek, J., Comparison of selected formulations for multibody systems dynamics with redundant constraints, Arch. Mech. Eng., LXII, 1, 93-112 (2016)
[56] Pfeiffer, F., Non-smooth engineering dynamics, Meccanica, 51, 12, 3167-3184 (2016)
[57] Pfeiffer, F.; Glocker, C., Multibody Dynamics with Unilateral Contacts. Nonlinear Science (1996), New York: Wiley, New York · Zbl 0922.70001
[58] Rockafellar, R., Convex Analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0193.18401
[59] Rohde, C. A., Generalized inverses of partitioned matrices, J. Soc. Ind. Appl. Math., 13, 4, 1033-1035 (1965) · Zbl 0145.03801
[60] Seifried, R., Dynamics of Underactuated Multibody Systems (2014), Cham: Springer International Publishing Switzerland, Cham · Zbl 1283.70001
[61] Seon, J. A.; Dahmouche, R.; Gauthier, M., Enhance in-hand dexterous micromanipulation by exploiting adhesion forces, IEEE Trans. Robot., 34, 1, 113-125 (2018)
[62] Shi, J.; Woodruff, J.; Umbanhowar, P.; Lynch, K., Dynamic in-hand sliding manipulation, IEEE Trans. Robot., 33, 4, 778-795 (2017)
[63] Simeon, B., Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach (2013), Berlin: Springer, Berlin · Zbl 1279.70002
[64] Studer, C.; Glocker, C., Representation of normal cone inclusion problems in dynamics via non-linear equations, Arch. Appl. Mech., 76, 5, 327-348 (2006) · Zbl 1161.70337
[65] Tasora, A.; Anitescu, M., A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics, Comput. Methods Appl. Mech. Eng., 200, 5-8, 439-453 (2011) · Zbl 1225.70004
[66] Tasora, A.; Anitescu, M., A complementarity-based rolling friction model for rigid contacts, Meccanica, 48, 7, 1643-1659 (2013) · Zbl 1293.70052
[67] Tian, Y.; Takane, Y., Schur complements and Banachiewicz-Schur forms, Electron. J. Linear Algebra, 13, 405-418 (2005) · Zbl 1095.15006
[68] Trinkle, J. C., On the stability and instantaneous velocity of grasped frictionless objects, IEEE Trans. Robot. Autom., 8, 5, 560-572 (1992)
[69] Trinkle, J. C.; Pang, J. S.; Sudarsky, S.; Lo, G., On dynamic multi-rigid-body contact problems with Coulomb friction, J. Appl. Math. Mech./Z. Angew. Math. Mech., 77, 4, 267-279 (1997) · Zbl 0908.70008
[70] Trinkle, J. C.; Tzitzouris, J. A.; Pang, J. S., Dynamic multi-rigid-body systems with concurrent distributed contacts: theory and examples, Philos. Trans., Math. Phys. Eng. Sci., 359, 1789, 2575-2593 (2001) · Zbl 1014.70007
[71] Vanderbei, R.; Carpenter, T., Symmetric indefinite systems for interior point methods, Math. Program., 58, 1-3, 1-32 (1993) · Zbl 0791.90033
[72] Varkonyi, P. L.; Or, Y., Lyapunov stability of a rigid body with two frictional contacts, Nonlinear Dyn., 88, 363-393 (2017) · Zbl 1373.74050
[73] Wojtyra, M., Joint reactions in rigid body mechanisms with dependent constraints, Mech. Mach. Theory, 44, 2265-2278 (2009) · Zbl 1247.70026
[74] Wojtyra, M., Modeling of static friction in closed-loop kinetic chains-uniqueness and parametric sensitivity, Multibody Syst. Dyn., 39, 337-361 (2017) · Zbl 1377.70028
[75] Wojtyra, M.; Uhl, T., The Moore-Penrose inverse approach to modeling of multibody systems with redundant constraints, Advances in Mechanisms and Machine Science, Mechanisms and Machine Science, 3087-3096 (2019), Cham: Springer Nature Switzerland AG, Cham
[76] Wojtyra, M.; Fraczek, J., Comparison of selected methods of handling redundant constraints in multibody systems simulations, J. Comput. Nonlinear Dyn., 8 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.