×

A robust nonsmooth generalized-\(\alpha\) scheme for flexible systems with impacts. (English) Zbl 1437.70011

Summary: The aim of this work is the development of a robust and accurate time integrator for the simulation of the dynamics of multibody systems composed of rigid and/or flexible bodies subject to frictionless contacts and impacts. The integrator is built upon a previously developed nonsmooth generalized-\(\alpha\) scheme time integrator which was able to deal well with nonsmooth dynamical problems avoiding any constraint drift phenomena and capturing vibration effects without introducing too much numerical dissipation. However, when dealing with problems involving nonlinear bilateral constraints and/or flexible elements, it is necessary to adopt small time-step sizes to ensure the convergence of the numerical scheme. In order to tackle these problems more efficiently, a fully decoupled version of the nonsmooth generalized-\(\alpha\) method is proposed in this work, avoiding these inconveniences. Several examples are considered to assess its accuracy and robustness.

MSC:

70E55 Dynamics of multibody systems
70F35 Collision of rigid or pseudo-rigid bodies
Full Text: DOI

References:

[1] Paoli, L.; Schatzman, M., A numerical scheme for impact problems I: the one-dimensional case, SIAM J. Numer. Anal., 40, 2, 702-733 (2002) · Zbl 1021.65065 · doi:10.1137/S0036142900378728
[2] Paoli, L.; Schatzman, M., A numerical scheme for impact problems II: the multidimensional case, SIAM J. Numer. Anal., 40, 2, 734-768 (2002) · Zbl 1027.65093 · doi:10.1137/S003614290037873X
[3] Jean, M.; Moreau, J. J., Dynamics in the presence of unilateral contacts and dry friction: a numerical approach, Unilateral Problems in Structural Analysis, 151-196 (1987), Vienna: Springer, Vienna · Zbl 0780.73069
[4] Moreau, J. J., Unilateral contact and dry friction in finite freedom dynamics, Nonsmooth Mechanics and Applications, 1-82 (1988), Vienna: Springer, Vienna · Zbl 0703.73070
[5] Jean, M., The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., 177, 3-4, 235-257 (1999) · Zbl 0959.74046 · doi:10.1016/S0045-7825(98)00383-1
[6] Brüls, O.; Acary, V.; Cardona, A., Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\( \alpha\) scheme, Comput. Methods Appl. Mech. Eng., 281, 131-161 (2014) · Zbl 1423.74659 · doi:10.1016/j.cma.2014.07.025
[7] Chen, Q.; Acary, V.; Virlez, G.; Brüls, O., A nonsmooth generalized-\( \alpha\) scheme for flexible multibody systems with unilateral constraints, Int. J. Numer. Methods Eng., 96, 8, 487-511 (2013) · Zbl 1352.70012 · doi:10.1002/nme.4563
[8] Schindler, T.; Acary, V., Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook, Math. Comput. Simul., 95, 180-199 (2014) · Zbl 1533.65099 · doi:10.1016/j.matcom.2012.04.012
[9] Schindler, T.; Rezaei, S.; Kursawe, J.; Acary, V., Half-explicit timestepping schemes on velocity level based on time-discontinuous Galerkin methods, Comput. Methods Appl. Mech. Eng., 290, 250-276 (2015) · Zbl 1423.74918 · doi:10.1016/j.cma.2015.03.001
[10] Brüls, O.; Acary, V.; Cardona, A., On the constraints formulation in the nonsmooth generalized-\( \alpha\) method, Advanced Topics in Nonsmooth Dynamics, 335-374 (2018), Berlin: Springer, Berlin · Zbl 1392.49002
[11] Acary, V., Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction, Comput. Methods Appl. Mech. Eng., 256, 224-250 (2013) · Zbl 1352.74477 · doi:10.1016/j.cma.2012.12.012
[12] Schoeder, S.; Ulbrich, H.; Schindler, T., Discussion of the Gear-Gupta-Leimkuhler method for impacting mechanical systems, Multibody Syst. Dyn., 31, 4, 477-495 (2013) · doi:10.1007/s11044-013-9370-y
[13] Géradin, M.; Cardona, A., Flexible Multibody Dynamics: A Finite Element Approach (2001), Chichester: Wiley, Chichester
[14] Moreau, J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Eng., 177, 3-4, 329-349 (1999) · Zbl 0968.70006 · doi:10.1016/S0045-7825(98)00387-9
[15] Gear, C.; Leimkuhler, B.; Gupta, G., Automatic integration of Euler-Lagrange equations with constraints, J. Comput. Appl. Math., 12-13, 77-90 (1985) · Zbl 0576.65072 · doi:10.1016/0377-0427(85)90008-1
[16] Arnold, M.; Brüls, O., Convergence of the generalized-\( \alpha\) scheme for constrained mechanical systems, Multibody Syst. Dyn., 18, 2, 185-202 (2007) · Zbl 1121.70003 · doi:10.1007/s11044-007-9084-0
[17] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\( \alpha\) method, J. Appl. Mech., 60, 2, 371-375 (1993) · Zbl 0775.73337 · doi:10.1115/1.2900803
[18] Alart, P.; Curnier, A., A mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Eng., 92, 3, 353-375 (1991) · Zbl 0825.76353 · doi:10.1016/0045-7825(91)90022-X
[19] Cardona, A.; Géradin, M., Numerical integration of second order differential—algebraic systems in flexible mechanism dynamics, Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, 501-529 (1994), Netherlands: Springer, Netherlands · Zbl 0874.73072
[20] Cardona, A.; Klapka, I.; Géradin, M., Design of a new finite element programming environment, Eng. Comput., 11, 365-381 (1994) · Zbl 0935.74063 · doi:10.1108/02644409410799344
[21] Brüls, O.; Cardona, A.; Arnold, M., Lie group generalized-\( \alpha\) time integration of constrained flexible multibody systems, Mech. Mach. Theory, 48, 121-137 (2012) · doi:10.1016/j.mechmachtheory.2011.07.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.