×

Modification of friction for straightforward implementation of friction law. (English) Zbl 1437.70020

Summary: Friction phenomena exist in almost every mechanical device. Due to its complicated nature and influence on the system performance, extensive dynamic simulations are often required in the early system design stage. In this work, a novel approach for eliminating the numerical discontinuity in the classical Coulomb law and its extension is developed. Specifically, the method improves the computation process instead of modifying the Coulomb friction model. The estimated error of this procedure is derived under a simple and idealized model with an externally applied sinusoidal force. Two application examples of a single-body system are used to verify the proposed method, namely, 1-DOF mass-spring system with a moving belt and static ground. Results indicate that the proposed approach reveals the characteristics of the classical Coulomb friction law and its development and eliminates oscillations in the simulated friction force. Furthermore, a 3-DOF multi-body system is simulated to investigate the difference between the LuGre model and the proposed approach.

MSC:

70F40 Problems involving a system of particles with friction
70E55 Dynamics of multibody systems
Full Text: DOI

References:

[1] Saadabad, N. A.; Moradi, H.; Vossoughi, G., Dynamic modeling, optimized design, and fabrication of a 2DOF piezo-actuated stick-slip mobile microrobot, Mech. Mach. Theory, 133, 514-530 (2019) · doi:10.1016/j.mechmachtheory.2018.11.025
[2] Rahmani, M.; Behdinan, K., Investigation on the effect of coulomb friction on nose landing gear shimmy, J. Vib. Control, 25, 2, 255-272 (2019) · doi:10.1177/1077546318774440
[3] Wang, Y.; Zhu, J.; Pang, M.; Luo, J.; Xie, S.; Liu, M.; Sun, Y., A stick-slip positioning stage robust to load variations, IEEE/ASME Trans. Mechatron., 21, 4, 2165-2173 (2016) · doi:10.1109/TMECH.2016.2517102
[4] Marques, F.; Flores, P.; Claro, J. P.; Lankarani, H. M., Modeling and analysis of friction including rolling effects in multibody dynamics: a review, Multibody Syst. Dyn., 45, 2, 223-244 (2019) · doi:10.1007/s11044-018-09640-6
[5] Marques, F.; Flores, P.; Claro, J. P.; Lankarani, H. M., A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems, Nonlinear Dyn., 86, 3, 1407-1443 (2016) · doi:10.1007/s11071-016-2999-3
[6] Dupont, P. E., Friction modeling in dynamic robot simulation, Proceedings of the IEEE International Conference on Robotics and Automation, 1370-1376 (1990), New York: IEEE, New York
[7] Glocker, C., Set-Valued Force Laws: Dynamics of Non-smooth Systems, vol. 1 (2013), New York: Springer, New York
[8] Pennestrì, E.; Rossi, V.; Salvini, P.; Valentini, P. P., Review and comparison of dry friction force models, Nonlinear Dyn., 83, 4, 1785-1801 (2016) · Zbl 1353.74057 · doi:10.1007/s11071-015-2485-3
[9] Olsson, H.; Åström, K. J.; De Wit, C. C.; Gäfvert, M.; Lischinsky, P., Friction models and friction compensation, Eur. J. Control, 4, 3, 176-195 (1998) · Zbl 0932.74052 · doi:10.1016/S0947-3580(98)70113-X
[10] Karnopp, D., Computer simulation of stick-slip friction in mechanical dynamic systems, J. Dyn. Syst. Meas. Control, 107, 100-103 (1985) · doi:10.1115/1.3140698
[11] Awrejcewicz, J.; Grzelczyk, D.; Pyryev, Y., A novel dry friction modeling and its impact on differential equations computation and Lyapunov exponents estimation, J. Vibroeng., 10, 475-482 (2008)
[12] Xiang, W.; Yan, S.; Wu, J., Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints, Nonlinear Dyn., 95, 1, 321-341 (2019) · doi:10.1007/s11071-018-4566-6
[13] Dahl, P.R.: A solid friction model. Technical report, The Aerospace Corporation, El Segundo, CA (1968)
[14] Haessig, D. A.; Friedland, B., On the modeling and simulation of friction, J. Dyn. Syst. Meas. Control, 113, 354-362 (1991) · doi:10.1115/1.2896418
[15] Dupont, P.; Armstrong, B.; Hayward, V., Elasto-plastic friction model: contact compliance and stiction, Proc. Am. Control Conf., 2, 1072-1077 (2000)
[16] Gonthier, Y.; Mcphee, J.; Lange, C.; Piedboeuf, J-C., A regularized contact model with asymmetric damping and dwell-time dependent friction, Multibody Syst. Dyn., 11, 209-233 (2004) · Zbl 1143.74344 · doi:10.1023/B:MUBO.0000029392.21648.bc
[17] Liang, J.; Fillmore, S.; Ma, O., An extended bristle friction force model with experimental validation, Mech. Mach. Theory, 56, 123-137 (2012) · doi:10.1016/j.mechmachtheory.2012.06.002
[18] Canudas De Wit, C.; Olsson, H.; Åström, K. J.; Lischinsky, P., A new model for control of systems with friction, IEEE Trans. Autom. Control, 40, 419-425 (1995) · Zbl 0821.93007 · doi:10.1109/9.376053
[19] Kapelke, S.; Seemann, W.; Hetzler, H., The effect of longitudinal high-frequency in-plane vibrations on a 1-DoF friction oscillator with compliant contact, Nonlinear Dyn., 88, 4, 3003-3015 (2017) · doi:10.1007/s11071-017-3428-y
[20] Liu, C. C.; Tsai, M. S.; Cheng, C. C., Development of a novel transmission engaging model for characterizing the friction behavior of a feed drive system, Mech. Mach. Theory, 134, 425-439 (2019) · doi:10.1016/j.mechmachtheory.2019.01.009
[21] Piatkowski, T.; Wolski, M., Analysis of selected friction properties with the Froude pendulum as an example, Mech. Mach. Theory, 119, 37-50 (2018) · doi:10.1016/j.mechmachtheory.2017.08.016
[22] Threlfall, D. C., The inclusion of Coulomb friction in mechanisms programs with reference to DRAM au programme DRAM, Mech. Mach. Theory, 13, 475-483 (1978) · doi:10.1016/0094-114X(78)90020-4
[23] Bengisu, M. T.; Akay, A., Stability of friction-induced vibrations in multi-degree-of-freedom systems, J. Sound Vib., 171, 557-570 (1994) · Zbl 1064.70508 · doi:10.1006/jsvi.1994.1140
[24] Ambrósio, J. A.C., Impact of rigid and flexible multibody systems: deformation description and contact model, Virt. Nonlinear Multibody Syst., 103, 57-81 (2003) · Zbl 1080.74541 · doi:10.1007/978-94-010-0203-5_4
[25] Brown, P.; Mcphee, J., A continuous velocity-based friction model for dynamics and control with physically meaningful parameters, J. Comput. Nonlinear Dyn., 11, 5 (2016) · doi:10.1115/1.4033658
[26] Haug, E., Simulation of friction and stiction in multibody dynamics model problems, Mech. Based Des. Struct. Mach., 46, 3, 296-317 (2018) · doi:10.1080/15397734.2017.1341840
[27] Zobova, A. A., Dry friction distributed over a contact patch between a rigid body and a visco-elastic plane, Multibody Syst. Dyn., 45, 2, 203-222 (2019) · Zbl 1412.70007 · doi:10.1007/s11044-018-09637-1
[28] Bhushan, B., Introduction to Tribology, 201-202 (2013), New York: Wiley, New York
[29] Lorenz, H., Lehrbuch der Technischen Physik: Erster Band: Technische Mechanik starrer Gebilde. Verlag von julius (1924), Berlin: Springer, Berlin · JFM 50.0521.01
[30] Pennestri, E.; Valentini, P. P.; Vita, L., Multibody dynamics simulation of planar linkages with Dahl friction, Multibody Syst. Dyn., 17, 4, 321-347 (2007) · Zbl 1111.70005 · doi:10.1007/s11044-007-9047-5
[31] Marques, F.; Flores, P.; Lankarani, H. M., On the frictional contacts in multibody system dynamics, Multibody Dynamics, 67-91 (2016), Cham: Springer, Cham
[32] Zeitschrift des Vereines Deutscher Ingenieure Die wesentlichen Eigenschaften der Gleit und Rollenlager 46, 1342-1348 (1903)
[33] Bo, L. C.; Pavelescu, D., The friction-speed relation and its influence on the critical velocity of stick-slip motion, Wear, 82, 277-289 (1982) · doi:10.1016/0043-1648(82)90223-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.